Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cancer Sci ; 114(2): 463-476, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36271761

RESUMO

Although histone H3K4 methyltransferase SETD1A is overexpressed in various cancer types, the molecular mechanism underlying its overexpression and its target genes in pancreatic ductal adenocarcinoma (PDAC) remain unclarified. We conducted immunohistochemical staining for SETD1A in 105 human PDAC specimens to assess the relationship between SETD1A overexpression and clinicopathological features. The function and target genes of SETD1A were investigated using human pancreatic cancer cell lines. SETD1A expression was upregulated in 51.4% of patients with PDAC and was an independent prognostic factor associated with shorter disease-free survival after resection (p < 0.05). Knockdown and overexpression of SETD1A showed that SETD1A plays a crucial role in increasing the proliferation and motility of PDAC cells. SETD1A overexpression increased tumorigenicity. RNA sequencing of SETD1A-knockdown cells revealed downregulation of RUVBL1, an oncogenic protein ATP-dependent DNA helicase gene. ChIP analysis revealed that SETD1A binds to the RUVBL1 promoter region, resulting in increased H3K4me3 levels. Knockdown of RUVBL1 showed inhibition of cell proliferation, migration, and invasion of PDAC cells, which are similar biological effects to SETD1A knockdown. High expression of both SETD1A and RUVBL1 was an independent prognostic factor not only for disease-free survival but also for overall survival (p < 0.05). In conclusion, we identified RUVBL1 as a novel downstream target gene of the SETD1A-H3K4me3 pathway. Co-expression of SETD1A and RUVBL1 is an important factor for predicting the prognosis of patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Relevância Clínica , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Prognóstico , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Pancreáticas
2.
Gastric Cancer ; 25(1): 83-95, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387762

RESUMO

BACKGROUND: There is a need for a model of diffuse-type gastric cancer that captures the features of the disease, facilitates the study of its mechanisms, and aids the development of potential therapies. One such model may be Cdh1 and Trp53 double conditional knockout (DCKO) mice, which have histopathological features similar to those of human diffuse-type gastric cancer. However, a genomic profile of this mouse model has yet to be completed. METHODS: Whole-genome sequences of tumors from eight DCKO mice were analyzed and their molecular features were compared with those of human gastric adenocarcinoma. RESULTS: DCKO mice gastric cancers harbored single nucleotide variations and indel patterns comparable to those of human genomically stable gastric cancers, whereas their copy number variation fraction and ploidy were more similar to human chromosomal instability gastric cancers (perhaps due to Trp53 knockout). Copy number variations dominated changes in cancer-related genes in DCKO mice, with typical high-level amplifications observed for oncogenic drivers, e.g., Myc, Ccnd1, and Cdks, as well as gastrointestinal transcription factors, e.g., Gata4, Foxa1, and Sox9. Interestingly, frequent alterations in gastrointestinal transcription factors in DCKO mice indicated their potential role in tumorigenesis. Furthermore, mouse gastric cancer had a reproducible but smaller number of mutational signatures than human gastric cancer, including the potentially acid-related signature 17, indicating shared tumorigenic etiologies in humans and mice. CONCLUSIONS: Cdh1/Trp53 DCKO mice have similar genomic features to those found in human gastric cancer; hence, this is a suitable model for further studies of diffuse-type gastric cancer mechanisms and therapies.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Genômica , Humanos , Camundongos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
3.
Int J Clin Oncol ; 27(7): 1101-1109, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35633441

RESUMO

Hepatocellular carcinoma (HCC) is a complex heterogeneous disease with high morbidity and mortality. Recent progress in molecular targeted drugs including multikinase inhibitors and immune checkpoint inhibitors has demonstrated substantial survival improvement in patients with advanced HCC, but it remains as a challenging issue to discover surrogate markers for precisely distinguishing responders and non-responders. Genome-based medicine has changed cancer treatment from empirical use of cytotoxic agents to theoretical use of molecular targeted drugs in various types of cancer, while not in HCC due to lack of druggable targets. Integrated genomic and transcriptomic analysis reveal that HCC is divided into three major subtypes, proliferative, CTNNB1-mutated and metabolic disease-associated, with distinctive molecular and immunological features, and an increasing number of studies provide evidence for the close correlation between the subtype and the response to molecular targeted drugs using both of clinical data and preclinical models. Dozens of immunocompetent mouse models, such as hydrodynamic tail vain injection models and implantable syngeneic models, reflect molecular characteristics and tumor immune microenvironment of the subtypes, and help us to evaluate the efficacy of single and combination therapies and understand the molecular mechanisms underlying vulnerability and resistance to them. Thus, the consensus classification and relevant preclinical models could accelerate the establishment of predictive biomarkers and the development of subtype-specific therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Terapia de Alvo Molecular , Microambiente Tumoral/genética
4.
Cancer Sci ; 112(11): 4570-4579, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34459070

RESUMO

Although the inhibition of acid ceramidase (AC) is known to induce antitumor effects in various cancers, there are few reports in pancreatic cancer, and the underlying mechanisms remain unclear. Moreover, there is currently no safe administration method of AC inhibitor. Here the effects of gene therapy using siRNA and shRNA for AC inhibition with its mechanisms for pancreatic cancer were investigated. The inhibition of AC by siRNA and shRNA using an adeno-associated virus 8 (AAV8) vector had antiproliferative effects by inducing apoptosis in pancreatic cancer cells and xenograft mouse model. Acid ceramidase inhibition elicits mitochondrial dysfunction, reactive oxygen species accumulation, and manganese superoxide dismutase suppression, resulting in apoptosis of pancreatic cancer cells accompanied by ceramide accumulation. These results elucidated the mechanisms underlying the antitumor effect of AC inhibition in pancreatic cancer cells and suggest the potential of the AAV8 vector to inhibit AC as a therapeutic strategy.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Terapia Genética/métodos , Doenças Mitocondriais/etiologia , Estresse Oxidativo , Neoplasias Pancreáticas/terapia , RNA Interferente Pequeno/uso terapêutico , Ceramidase Ácida/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Ceramidas/metabolismo , Dependovirus , Vetores Genéticos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Carcinogenesis ; 41(6): 734-742, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31665232

RESUMO

Genomic analyses have recently discovered the malignant subtype of human intrahepatic cholangiocarcinoma (ICC) characterized by frequent mutations of chromatin remodeling gene ARID1A; however, the biological and molecular functions still remain obscure. We here examined the clinical and biological significances of ARID1A deficiency in human ICC. Immunohistochemical analysis demonstrated that the loss of ARID1A was an independent prognostic factor for overall survival of ICC patients (P = 0.023). We established ARID1A-knockout (KO) cells by using the CRISPR/Cas9 system from two human cholangiocarcinoma cell lines. ARID1A-KO cells exhibited significantly enhanced migration, invasion, and sphere formation activity. Microarray analysis revealed that ALDH1A1, a stemness gene, was the most significantly elevated genes in ARID1A-KO cells. In addition, ALDH enzymatic activity as a hallmark of cancer stem cells was markedly high in the KO cells. ARID1A and histone deacetylase 1 were directly recruited to the ALDH1A1 promoter region in cholangiocarcinoma cells with undetectable ALDH1A1 expression by chromatin immunoprecipitation assay. The histone H3K27 acetylation level at the ALDH1A1 promoter region was increased in cells when ARID1A was disrupted (P < 0.01). Clinically, inverse correlation between ARID1A and ALDH1A1 expression was also identified in primary ICC (P = 0.018), and ARID1A-negative and ALDH1A1-positve ICCs showed worse prognosis than only ARID1A-negative cases (P = 0.002). In conclusion, ARID1A may function as a tumor suppressor in ICC through transcriptional downregulation of ALDH1A1 expression with decreasing histone H3K27 acetylation. Our studies provide the basis for the development of new epigenetic approaches to ARID1A-negative ICC. Immunohistochemical loss of ARID1A is an independent prognostic factor in intrahepatic cholangiocarcinoma patients. ARID1A recruits HDAC1 to the promoter region of ALDH1A1, a stemness gene, and epigenetically suppresses ALDH1A1 expression with decreasing histone H3K27 acetylation in cholangiocarcinoma cells.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/patologia , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Células-Tronco Neoplásicas/patologia , Retinal Desidrogenase/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Família Aldeído Desidrogenase 1/genética , Apoptose , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histonas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Retinal Desidrogenase/genética , Taxa de Sobrevida , Fatores de Transcrição/genética , Células Tumorais Cultivadas
6.
Ann Surg ; 271(4): 732-739, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-29979246

RESUMO

OBJECTIVE: To predict metachronous liver metastasis after pancreatectomy for pancreatic neuroendocrine neoplasms (Pan-NENs). SUMMARY OF BACKGROUND DATA: Liver metastasis determines the prognosis of patients with Pan-NENs, but no index exists in the WHO 2017 classification for this prediction. METHODS: Between April 2014 and March 2018, resected primary tumors from 20 patients with or without simultaneous liver metastasis were examined using genome-wide gene expression analysis. For validation analysis, resected primary tumors from 62 patients without simultaneous liver metastasis were examined for PAX6 expression. RESULTS: Gene expression profiling revealed pancreatic beta cell genes (NES, -2.0; P < 0.001) as the most downregulated set in patients with simultaneous liver metastasis. In the test study, PAX6 was the most valuable index for liver metastasis (log FC, -3.683; P = 0.0096). Multivariate analysis identified PAX6 expression (hazard ratio, 0.2; P = 0.03) as an independent risk factor for metachronous liver metastasis-free survival (mLM-FS). The 5-year mLM-FS of patients with high versus low PAX6 expression was significantly better (95% vs 66%, respectively; P < 0.0001). The 5-year overall survival rate of was also better than in those with high versus low PAX6 expression (100% vs 87%, respectively). Patients with low PAX 6 expression were significantly younger and leaner, had a higher Ki-67 index (P = 0.01, 0.007, 0.008, respectively), and showed a higher mitotic rate than patients with high PAX6 expression. CONCLUSIONS: Downregulated pancreatic beta cell genes involving PAX6 in primary tumors may predict mLM and poor overall survival after primary tumor resection in Pan-NEN patients.


Assuntos
Células Secretoras de Insulina/metabolismo , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/cirurgia , Fator de Transcrição PAX6/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Biomarcadores Tumorais/metabolismo , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Hepatectomia , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Masculino , Tumores Neuroendócrinos/mortalidade , Tumores Neuroendócrinos/secundário , Pancreatectomia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Fatores de Risco , Análise de Sobrevida
8.
Carcinogenesis ; 40(1): 15-26, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30508037

RESUMO

Histone modification plays important molecular roles in development and progression of cancers. Dysregulation of histone H3 arginine (R) methylation is still unknown in primary cancer, including gastric cancer (GC). Although PRMT6 contributes to asymmetric dimethylation at H3R2 (H3R2me2as) in cancer cells, its molecular functions are poorly understood in GC. In this study, we assessed H3R2me2as and PRMT6 expression levels in 133 primary GC tissues by immunohistochemistry. Increased H3R2me2as was found in 68 GC (51.1%) cases and independently related to poor prognosis. PRMT6 was overexpressed in 70 GC (52.6%) and strongly correlated with the global H3R2me2as levels (P < 0.001). By analyzing biological functions of PRMT6 in GC cell lines by lentivirus-based systems, PRMT6 overexpression enhanced global H3R2me2as and invasiveness in vitro, while PRMT6 knockout (PRMT6-KO) suppressed these effects and tumorigenicity in vivo. ChIP and microarray assays demonstrated that PRMT6-KO GC cells decreased the enrichments of H3R2me2as at the promoter regions of PCDH7, SCD and IGFBP5, resulting in upregulation of their gene expression. PRMT6 was recruited to the promoter regions of PCDH7 and SCD in the PRMT6-overexpressed cells. Knockdown of tumor suppressor PCDH7 in the PRMT6-KO GC cells elevated cell migration and invasion. PRMT6 expression inversely correlated with PCDH7 expression in primary GC (P = 0.021). Collectively, our findings strongly indicate that H3R2me2as is a strong prognostic indicator of GC patients, and PRMT6-overexpressing GC cells may acquire invasiveness through direct transcriptional inhibition of PCDH7 by increasing H3R2me2as level. Thus, inhibition of the PRMT6-H3R2me2as pathway could be a promising new therapeutic strategy in GC.


Assuntos
Histonas/metabolismo , Proteínas Nucleares/fisiologia , Proteína-Arginina N-Metiltransferases/fisiologia , Neoplasias Gástricas/metabolismo , Animais , Arginina/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/fisiologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Masculino , Metilação , Camundongos , Protocaderinas , Neoplasias Gástricas/patologia
9.
Int J Cancer ; 145(1): 192-205, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30556125

RESUMO

Although genomic analysis have recently discovered the malignant subtype of human pancreatic ductal adenocarcinoma (PDAC) characterized by frequent mutations of histone demethylase KDM6A, the biological and molecular roles still remain obscure. We herein elucidated the clinical and biological impacts of KDM6A deficiency on human PDAC and identified the therapeutic potential by pathological and molecular evaluation. Immunohistochemical analysis suggested that loss of KDM6A in cancerous tissues was an independent prognostic factor for both recurrence-free and overall survival in the 103 tumor specimens surgically resected from patients with PDAC. We established KDM6A knocked out cells by using the CRISPR/Cas9 system and KDM6A-expressed cells by doxycycline-inducible system from each two human PDAC cell lines, respectively. KDM6A knockout enhanced aggressive traits of human PDAC cell lines, whereas KDM6A overexpression suppressed them. Microarray analysis revealed reduced expression of 22 genes including five well-known tumor suppressors, such as CDKN1A, and ChIP-PCR analysis displayed depleted enrichment of histone H3 lysine 27 acetylation (H3K27ac) at the promoter regions of the five candidates. The epigenetic alterations were induced by the impaired recruitment of histone acetyltransferase p300, which cooperatively interacted with KDM6A. Consistent with these results, the KDM6A knockout cells demonstrated higher vulnerability to histone deacetylase (HDAC) inhibitors through the reactivation of CDKN1A in vitro and in vivo than the KDM6A wild-type. In conclusion, KDM6A exhibited essential roles in human PDAC as a tumor suppressor and KDM6A deficiency could be a promising biomarker for unfavorable outcome in PDAC patients and a potential surrogate marker for response to HDAC inhibitors.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Histona Desmetilases/deficiência , Proteínas Nucleares/deficiência , Neoplasias Pancreáticas/tratamento farmacológico , Acetilação , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Epigênese Genética , Técnicas de Inativação de Genes , Xenoenxertos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico
10.
Am J Pathol ; 188(5): 1213-1224, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29454748

RESUMO

Metabolic syndrome is a newly identified risk factor for hepatocellular carcinoma (HCC); however, tumor-specific biomarkers still remain unclear. We performed cross-species analysis to compare gene signatures of HCC from human patients and melanocortin 4 receptor-knockout mice, which develop HCC with obesity, insulin resistance, and dyslipidemia. Unsupervised hierarchical clustering and principle component analysis of 746 differentially expressed orthologous genes classified HCC of 152 human patients and melanocortin 4 receptor-knockout mice into two distinct subgroups, one of which included mouse HCC and was causatively associated with metabolic risk factors. Nine genes commonly overexpressed in human and mouse metabolic disease-associated HCC were identified; fatty acid binding protein 4 (FABP4) was remarkably enriched in intratumoral activated hepatic stellate cells (HSCs). Subclones constitutively expressing FABP4 were established from a human HSC cell line in which expression levels of inflammatory chemokines, including IL-1A and IL-6, were up-regulated through NF-κB nuclear translocation, resulting in recruitment of macrophages. An immunohistochemical validation study of 106 additional human HCC samples indicated that FABP4-positive HSCs were distributed in tumors of 38 cases, and the FABP4-high group consisted of patients with nonviral and nonalcoholic HCC (P = 0.027) and with multiple metabolic risk factors (P < 0.001) compared with the FABP4-low group. Thus, FABP4 overexpression in HSCs may contribute to hepatocarcinogenesis in patients with metabolic risk factors by modulation of inflammatory pathways.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Células Estreladas do Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a Ácido Graxo/genética , Células Estreladas do Fígado/patologia , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Fatores de Risco
11.
Br J Cancer ; 118(7): 972-984, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29527007

RESUMO

BACKGROUND: Diffuse-type gastric cancer (DGC) exhibits rapid disease progression and poor patient prognosis. We have previously established an E-cadherin/p53 double conditional knockout (DCKO) mouse line as the first genetically engineered one, which morphologically and molecularly recapitulates human DGC. In this study, we explored low-molecular-weight drugs selectively eliminating mouse and human DGC cells. METHODS: We derived mouse gastric cancer (GC) cell lines from DGC of the DCKO mice demonstrating enhanced tumourigenic activity in immunodeficient mice and acquired tolerance to cytotoxic anti-cancer agents. RESULTS: We performed a synthetic lethal screening of 1535 annotated chemical compounds, and identified 27 candidates selectively killing the GC cell lines. The most potent drug mestranol, an oestrogen derivative, and other oestrogen receptor modulators specifically attenuated cell viability of the GC cell lines by inducing apoptosis preceded by DNA damage. Moreover, mestranol could significantly suppress tumour growth of the GC cells subcutaneously transplanted into nude mice, consistent with longer survival time in the female DCKO mice than in the male. Expectedly, human E-cadherin-mutant and -low gastric cancer cells showed higher susceptibility to oestrogen drugs in contrast to E-cadherin-intact ones in vitro and in vivo. CONCLUSIONS: These findings may lead to the development of novel therapeutic strategies targeting DGC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Animais , Antineoplásicos/classificação , Antineoplásicos/uso terapêutico , Proteínas Cdh1/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Neoplasias Gástricas/patologia , Proteína Supressora de Tumor p53/genética
12.
J Hepatol ; 66(5): 942-951, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28238438

RESUMO

BACKGROUND & AIMS: Recent genomic studies have identified frequent mutations of AT-rich interactive domain 2 (ARID2) in hepatocellular carcinoma (HCC), but it is not still understood how ARID2 exhibits tumor suppressor activities. METHODS: We established the ARID2 knockout human HCC cell lines by using CRISPR/Cas9 system, and investigated the gene expression profiles and biological functions. RESULTS: Bioinformatic analysis indicated that UV-response genes were negatively regulated in the ARID2 knockout cells, and they were sensitized to UV irradiation. ARID2 depletion attenuated nucleotide excision repair (NER) of DNA damage sites introduced by exposure to UV as well as chemical compounds known as carcinogens for HCC, benzo[a]pyrene and FeCl3, since xeroderma pigmentosum complementation group G (XPG) could not accumulate without ARID2. By using large-scale public data sets, we validated that ARID2 knockout could lead to similar molecular changes between in vitro and in vivo settings. A higher number of somatic mutations in the ARID2-mutated subtypes than that in the ARID2 wild-type across various types of cancers including HCC was observed. CONCLUSIONS: We provide evidence that ARID2 knockout could contribute to disruption of NER process through inhibiting the recruitment of XPG, resulting in susceptibility to carcinogens and potential hypermutation. These findings have implications for therapeutic targets in cancers harboring ARID2 mutations. LAY SUMMARY: Recent genomic studies have identified frequent mutations of ARID2, a component of the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, in hepatocellular carcinoma, but it is not still understood how ARID2 exhibits tumor suppressor activities. In current study, we provided evidence that ARID2 knockout could contribute to disruption of DNA repair process, resulting in susceptibility to carcinogens and potential hypermutation. These findings have far-reaching implications for therapeutic targets in cancers harboring ARID2 mutations.


Assuntos
Carcinoma Hepatocelular/genética , Dano ao DNA , Neoplasias Hepáticas/genética , Fatores de Transcrição/fisiologia , Apoptose , Linhagem Celular Tumoral , Biologia Computacional , Reparo do DNA , Humanos , Mutação , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
13.
Gut ; 61(3): 344-53, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21865403

RESUMO

BACKGROUND: Gastric cancer is the second most frequent cause of death from cancer in the world, diffuse-type gastric cancer (DGC) exhibiting a poor prognosis. Germline mutations of CDH1, encoding E-cadherin, have been reported in hereditary DGC, and genetic and/or epigenetic alterations of CDH1 are frequently detected in sporadic DGC. Genetic alterations of TP53 are also frequently found in DGC. To examine the synergistic effect of the loss of E-cadherin and p53 on gastric carcinogenesis, a mouse line was established in which E-cadherin and p53 are specifically inactivated in the stomach parietal cell lineage. METHODS: Atp4b-Cre mice were crossed with Cdh1(loxP/loxP) and Trp53(loxP/loxP) mice, and the gastric phenotype of Atp4b-Cre(+);Cdh1(loxP/loxP);Trp53(loxP/loxP) double conditional knockout (DCKO) mice was examined. RESULTS: Non-polarised E-cadherin-negative parietal cells and proton pump-negative atypical foci were observed in DCKO mice. Intramucosal cancers and invasive cancers composed of poorly differentiated carcinoma cells and signet ring cells, histologically very similar to those in humans, were found from 6 to 9 months, respectively. Fatal DGC developed at 100% penetrance within a year, frequently metastasised to lymph nodes, and had tumourigenic activity in immunodeficient mice. Gene expression profiles of DGC in DCKO mice also resembled those of human DGC, and mesenchymal markers and epithelial-mesenchymal transition-related genes were highly expressed in mouse DGC as in human DGC. CONCLUSION: This mouse line is the first genetically engineered mouse model of DGC and is very useful for clarifying the mechanism underlying gastric carcinogenesis, and provides a new approach to the treatment and prevention of DGC.


Assuntos
Caderinas/fisiologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Gástricas/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Animais , Caderinas/deficiência , Polaridade Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , DNA de Neoplasias/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença , Tolerância Imunológica , Metástase Linfática , Camundongos , Camundongos Knockout , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/patologia , Bombas de Próton/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteína Supressora de Tumor p53/deficiência
14.
J Gastroenterol ; 58(6): 540-553, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36859628

RESUMO

BACKGROUND: Recent advances in immune checkpoint blockade (ICB) have improved patient prognosis in mismatch repair-deficient and microsatellite instability-high colorectal cancer (dMMR/MSI-H CRC); however, PD-1 blockade has faced a challenge in early progressive disease. We aimed to understand the early event in ICB resistance using an in vivo model. METHODS: We subcutaneously transplanted the MC38 colon cancer cells into C57BL/6 mice, intraperitoneally injected anti-PD-1 antibody and then isolated ICB-resistant subclones from the recurrent tumors. RESULTS: Comparative gene expression analysis discovered seven genes significantly downregulated in the ICB-resistant cells. Tumorigenicity assay of the MC38 cells knocked out each of the seven candidate genes into C57BL/6 mice treated with anti-PD-1 antibody and bioinformatics analysis of the relationship between the expression of the seven candidate genes and the outcome of cancer patients receiving immunotherapy identified Rtp4, an interferon-stimulated gene and a chaperon protein of G protein-coupled receptors, as a gene involved in ICB resistance. Immunohistochemical analysis of transplanted tumor tissues demonstrated that anti-PD-1 antibody failed to recruit T lymphocytes in the Rtp4-KO MC38 cells. Mouse and human RTP4 expression could be silenced via histone H3 lysine 9 (H3K9) trimethylation, and public transcriptome data indicated the high expression level of RTP4 in most but not all of dMMR/MSI-H CRC. CONCLUSIONS: We clarified that RTP4 could be silenced by histone H3K9 methylation as the early event of ICB resistance. RTP4 expression could be a promising biomarker for predicting ICB response, and the combination of epigenetic drugs and immune checkpoint inhibitors might exhibit synergistic effects on dMMR/MSI-H CRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Instabilidade de Microssatélites , Chaperonas Moleculares/genética , Chaperonas Moleculares/uso terapêutico
15.
Hepatol Commun ; 7(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37782459

RESUMO

BACKGROUND: NAFLD caused by abnormalities in hepatic lipid metabolism is associated with an increased risk of developing HCC. The molecular mechanisms underlying the progression of NAFLD-related HCC are not fully understood. We investigated the molecular mechanism and role of KDM6B downregulation in NAFLD-related HCC after the KDM6B gene was identified using microarray analysis as commonly downregulated in mouse NAFLD-related HCC and human nonhepatitis B and nonhepatitis C viral-HCC. METHODS: The 5-hydroxymethylcytosine levels of KDM6B in HCC cells were determined using glycosylated hydroxymethyl-sensitive PCR. Microarray and chromatin immunoprecipitation analyses using KDM6B-knockout (KO) cells were used to identify KDM6B target genes. Lipotoxicity was assessed using a palmitate-treated cell proliferation assay. Immunohistochemistry was used to evaluate KDM6B expression in human HCC tissues. RESULTS: KDM6B expression levels in HCC cells correlated with the 5-hydroxymethylcytosine levels in the KDM6B gene body region. Gene set enrichment analysis revealed that the lipid metabolism pathway was suppressed in KDM6B-KO cells. KDM6B-KO cells acquired resistance to lipotoxicity (p < 0.01) and downregulated the expression of G0S2, an adipose triglyceride lipase/patatin like phospholipase domain containing 2 (ATGL/PNPLA2) inhibitor, through increased histone H3 lysine-27 trimethylation levels. G0S2 knockdown in KDM6B-expressed HCC cells conferred lipotoxicity resistance, whereas ATGL/PNPLA2 inhibition in the KDM6B-KO cells reduced these effects. Immunohistochemistry revealed that KDM6B expression was decreased in human NAFLD-related HCC tissues (p < 0.001), which was significantly associated with decreased G0S2 expression (p = 0.032). CONCLUSIONS: KDM6B-disrupted HCC acquires resistance to lipotoxicity via ATGL/PNPLA2 activation caused by epigenetic downregulation of G0S2 expression. Reduced KDM6B and G0S2 expression levels are common in NAFLD-related HCC. Targeting the KDM6B-G0S2-ATGL/PNPLA2 pathway may be a useful therapeutic strategy for NAFLD-related HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Lipase/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética
16.
Sci Rep ; 13(1): 9449, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296228

RESUMO

Hepatocellular carcinoma (HCC) imposes a huge global burden, arising from various etiological factors such as hepatitis virus infection and metabolic syndrome. While prophylactic vaccination and antiviral treatment have decreased the incidence of viral HCC, the growing prevalence of metabolic syndrome has led to an increase in non-viral HCC. To identify genes downregulated and specifically associated with unfavorable outcome in non-viral HCC cases, screening analysis was conducted using publically available transcriptome data. Among top 500 genes meeting the criteria, which were involved in lipid metabolism and mitochondrial function, a serine transporter located on inner mitochondrial membrane SFXN1 was highlighted. SFXN1 protein expression was significantly reduced in 33 of 105 HCC tissue samples, and correlated to recurrence-free and overall survival only in non-viral HCC. Human HCC cells with SFXN1 knockout (KO) displayed higher cell viability, lower fat intake and diminished reactive oxygen species (ROS) production in response to palmitate administration. In a subcutaneous transplantation mouse model, high-fat diet feeding attenuated tumorigenic potential in the control cells, but not in the SFXN1-KO cells. In summary, loss of SFXN1 expression suppresses lipid accumulation and ROS generation, preventing toxic effects from fat overload in non-viral HCC, and predicts clinical outcome of non-viral HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Síndrome Metabólica , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Síndrome Metabólica/complicações , Espécies Reativas de Oxigênio , Antivirais/uso terapêutico
17.
Sci Rep ; 12(1): 10466, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773436

RESUMO

Immune checkpoint blockade (ICB) treatment improves the prognosis of several types of solid tumors, however, responsiveness to ICB therapy remains low in pancreatic ductal adenocarcinoma (PDACs), which has a rich tumor microenvironment (TME). The TME is composed of various stromal cells, including cancer-associated fibroblasts (CAFs), which contribute to the establishment of an immunosuppressive microenvironment. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an innate immune pathway that results in the upregulation of immune cell recruiting-cytokines and anti-tumor efficacy. In this study, we aimed to investigate the impact of cGAS-STING expression and the presence of CAFs upon immune cell infiltration in PDACs. cGAS and STING co-expressing PDAC cases showed favorable survival, with many cytotoxic CD8 + T cell infiltrations from the stromal component adjacent to the cancer cells toward cancer cells, but not in cGAS-STING signaling defected PDAC cases. The signatures of tumor-restrain CAFs were expressed in tumors with cGAS-STING signaling. Finally, transwell co-culture experiments demonstrated that immune cell infiltration was impeded by the presence of CAFs, but not by activation of cGAS-STING signaling. In conclusion, pro-infiltration signals, such as cGAS-STING, and characterization of CAFs are crucial in defeating CAF barricades and encouraging immune cell infiltration in PDACs.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Proteínas de Membrana , Nucleotidiltransferases , Neoplasias Pancreáticas , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Humanos , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Microambiente Tumoral
18.
Cancer Sci ; 102(7): 1313-21, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21457403

RESUMO

CD133 is a universal marker of tissue stem/progenitor cells as well as cancer stem cells, but its physiological significance remains to be elucidated. Here we examined the relationship between expression of CD133 and features of gastric epithelial cells, and found that CD133-positive (CD133[+]) tumor cell lines formed well-differentiated tumors while CD133-negative (CD133[-]) lines formed poorly differentiated ones when subcutaneously injected into nude mice. We also found that CD133(+) and CD133(-) cell populations co-existed in some cell lines. FACS analysis showed that CD133(+) cells were mother cells because CD133(+) cells formed both CD133(+) and CD133(-) cells, but CD133(-) cells did not form CD133(+) cells. In these cell lines, CD133(+) cells formed well-differentiated tumors while CD133(-) cells formed poorly differentiated ones. In human gastric cancers, CD133 was exclusively expressed on the luminal surface membrane of gland-forming cells, and it was never found on poorly differentiated diffuse-type cells. Considering that poorly differentiated tumors often develop from well-differentiated tumors during tumor progression, these results suggest that loss of expression of CD133 might be related to gastric tumor progression. Microarray analysis showed that CD133(+) cells specifically expressed Sox17, a tumor suppressor in gastric carcinogenesis. Forced expression of SOX17 induced expression of CD133 in CD133(-) cells, and reduction of SOX17 caused by siRNA in CD133(+) cells induced a reduction in the level of CD133. These results indicate that Sox17 might be a key transcription factor controlling CD133 expression, and that it might also play a role in the control of gastric tumor progression.


Assuntos
Antígenos CD/fisiologia , Glicoproteínas/fisiologia , Proteínas HMGB/fisiologia , Células-Tronco Neoplásicas/química , Peptídeos/fisiologia , Fatores de Transcrição SOXF/fisiologia , Neoplasias Gástricas/patologia , Antígeno AC133 , Animais , Antígenos CD/análise , Feminino , Mucosa Gástrica/patologia , Perfilação da Expressão Gênica , Glicoproteínas/análise , Proteínas HMGB/análise , Humanos , Camundongos , Peptídeos/análise , Fatores de Transcrição SOXF/análise , Neoplasias Gástricas/química
19.
J Hepatobiliary Pancreat Sci ; 28(1): 62-75, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33259135

RESUMO

The development of hepatocellular carcinoma (HCC) is a multistep process with a complex interaction of various genetic backgrounds and the tumor microenvironment. In addition to the development of rational approaches to epidemiologic research, early detection, and diagnosis, considerable progress has been made in systemic treatment with molecular-targeted agents for patients with advanced HCC. Moreover, encouraging reports of recent clinical trials of combination therapy with immune-checkpoint inhibitors (ICIs) has raised high hopes. Each HCC is the result of a unique combination of somatic alterations, including genetic, epigenetic, transcriptomic, and metabolic events, leading to conclusive tumoral heterogeneity. Recent advances in comprehensive genetic analysis have accelerated molecular classification and defined subtypes with specific characteristics, including immune-associated molecular profiles reflecting the immune reactivity in the tumor. In considering the development of therapeutic strategies in combination with immunotherapy, proper interpretation of molecular pathological characterization could lead to effective therapeutic deployment and enable individualization of the management of HCC. Here, we review distinctive molecular alterations in the subtype classification of HCC, current therapies, and representative clinical trials with alternative immune-combination approaches from a molecular pathological point.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Terapia Combinada , Humanos , Imunoterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Microambiente Tumoral
20.
Sci Rep ; 11(1): 16732, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429454

RESUMO

Comprehensive analysis of clinical samples has recently identified molecular and immunological classification of hepatocellular carcinoma (HCC), and the CTNNB1 (ß-catenin)-mutated subtype exhibits distinctive characteristics of immunosuppressive tumor microenvironment. For clarifying the molecular mechanisms, we first established human and mouse HCC cells with exon 3 skipping of ß-catenin, which promoted nuclear translocation and activated the Wnt/ß-catenin signaling pathway, by using newly developed multiplex CRISPR/Cas9-based genome engineering system. Gene set enrichment analysis indicated downregulation of immune-associated gene sets in the HCC cells with activated ß-catenin signaling. Comparative analysis of gene expression profiles between HCC cells harboring wild-type and exon 3 skipping ß-catenin elucidated that the expression levels of four cytokines were commonly decreased in human and mouse ß-catenin-mutated HCC cells. Public exome and transcriptome data of 373 human HCC samples showed significant downregulation of two candidate cytokine genes, CCL20 and CXCL2, in HCC tumors with ß-catenin hotspot mutations. T cell killing assays and immunohistochemical analysis of grafted tumor tissues demonstrated that the mouse Ctnnb1Δex3 HCC cells evaded immunosurveillance. Taken together, this study discovered that cytokine controlled by ß-catenin signaling activation could contribute to immune evasion, and provided novel insights into cancer immunotherapy for the ß-catenin-mutated HCC subtype.


Assuntos
Carcinoma Hepatocelular/metabolismo , Éxons , Evasão da Resposta Imune , Neoplasias Hepáticas/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Mutação , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA