Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Neurochem ; 163(5): 375-390, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36227633

RESUMO

Phosphacan, a chondroitin sulfate proteoglycan, is a repulsive cue of cerebellar granule cells. This study aims to explore the molecular mechanism. The glycosylphosphatidylinositol-anchored neural adhesion molecule TAG-1 is a binding partner of phosphacan, suggesting that the repulsive effect of phosphacan is possibly because of its interaction with TAG-1. The repulsive effect was greatly reduced on primary cerebellar granule cells of TAG-1-deficient mice. Surface plasmon resonance analysis confirmed the direct interaction of TAG-1 with chondroitin sulfate C. On postnatal days 1, 4, 7, 11, 15, and 20 and in adulthood, phosphacan was present in the molecular layer and internal granular layer, but not in the external granular layer. In contrast, transient TAG-1 expression was observed exclusively within the premigratory zone of the external granular layer on postnatal days 1, 4, 7, and 11. Boyden chamber cell migration assay demonstrated that phosphacan exerted its repulsive effect on the spontaneous and brain-derived neurotrophic factor (BDNF)-induced migration of cerebellar granule cells. The BDNF-induced migration was inhibited by MK-2206, an Akt inhibitor. The pre-treatment with a raft-disrupting agent, methyl-ß-cyclodextrin, also inhibited the BDNF-induced migration, suggesting that lipid rafts are involved in the migration of cerebellar granule cells. In primary cerebellar granule cells obtained on postnatal day 7 and cultured for 7 days, the ganglioside GD3 and TAG-1 preferentially localized in the cell body, whereas the ganglioside GD1b and NB-3 localized in not only the cell body but also neurites. Pre-treatment with the anti-GD3 antibody R24, but not the anti-GD1b antibody GGR12, inhibited the spontaneous and BDNF-induced migration, and attenuated BDNF-induced Akt activation. These findings suggest that phosphacan is responsible for the repulsion of TAG-1-expressing cerebellar granule cells via GD3 rafts to attenuate BDNF-induced migration signaling.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Animais , Camundongos , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Cerebelo/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo
2.
EMBO J ; 35(16): 1745-65, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27192985

RESUMO

Little is known about the molecules mediating the cross-talk between post-traumatic axons and scar-forming cells after spinal cord injury. We found that a sustained NB-3 induction was simultaneously present in the terminations of post-traumatic corticospinal axons and scar-forming cells at the spinal lesion site, where they were in direct contact when axons tried to penetrate the glial scar. The regrowth of corticospinal axons was enhanced in vivo with NB-3 deficiency or interruption of NB-3 trans-homophilic interactions. Biochemical, in vitro and in vivo evidence demonstrated that NB-3 homophilically interacted in trans to initiate a growth inhibitory signal transduction from scar-forming cells to neurons by modulating mTOR activity via CHL1 and PTPσ. NB-3 deficiency promoted BMS scores, electrophysiological transmission, and synapse reformation between regenerative axons and neurons. Our findings demonstrate that NB-3 trans-homophilic interactions mediate the cross-talk between post-traumatic axons and scar-forming cells and impair the intrinsic growth ability of injured axons.


Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Comunicação Celular , Cicatriz/patologia , Neuroglia/fisiologia , Transdução de Sinais , Traumatismos da Medula Espinal/patologia , Animais , Camundongos , Camundongos Knockout , Modelos Biológicos
3.
Chem Pharm Bull (Tokyo) ; 67(5): 452-460, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31061370

RESUMO

The Michael reaction of malonates with maleates afforded the corresponding adducts in high yields with high enantioselectivities (up to 98% enantiomeric excess (ee)) by using dilithium 3,3'-dichlorobinaphtholate as a catalyst. The obtained Michael adducts could be converted to optically active tricarboxylic acid (TCA) derivatives via the Krapcho reaction.


Assuntos
Lítio/química , Maleatos/química , Malonatos/química , Ácidos Tricarboxílicos/síntese química , Catálise , Técnicas de Química Sintética , Maleatos/síntese química , Malonatos/síntese química , Estereoisomerismo , Ácidos Tricarboxílicos/química
4.
J Am Chem Soc ; 139(20): 6855-6858, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28488440

RESUMO

We describe the kinetic resolution of a readily available 2-pyridyl ester via an amide bond formation catalyzed by a chiral Brønsted acid. A chiral phosphoric acid bearing a 2,4,6-trimethyl-3,5-dinitrophenyl group at the 3,3'-position enabled this transformation with high selectivities. We also found that the addition of Lewis acid increased both the reactivity and selectivity in the substrate with a methoxy group.

5.
Chem Pharm Bull (Tokyo) ; 65(10): 989-993, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966283

RESUMO

Chiral phosphine oxide sequentially activates silicon tetrachloride and trichlorosilyl enol ethers to facilitate asymmetric aldol/vinylogous aldol reaction of 4-methoxy-3-penten-2-one and conjugated aldehydes in a highly enantioselective fashion, and the subsequent cyclization produced optically active 2,6-disubstituted 2,3-dihydro-4-pyranones bearing stereogenic centers at a remote position in a single operation.


Assuntos
Aldeídos/química , Fosfinas/química , Catálise , Cloretos/química , Cristalografia por Raios X , Reação de Cicloadição , Conformação Molecular , Óxidos/química , Compostos de Silício/química , Estereoisomerismo
6.
J Biol Chem ; 290(21): 13202-14, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25750127

RESUMO

As acidic glycocalyx on primary mouse microglial cells and a mouse microglial cell line Ra2, expression of polysialic acid (polySia/PSA), a polymer of the sialic acid Neu5Ac (N-acetylneuraminic acid), was demonstrated. PolySia is known to modulate cell adhesion, migration, and localization of neurotrophins mainly on neural cells. PolySia on Ra2 cells disappeared very rapidly after an inflammatory stimulus. Results of knockdown and inhibitor studies indicated that rapid surface clearance of polySia was achieved by secretion of endogenous sialidase Neu1 as an exovesicular component. Neu1-mediated polySia turnover was accompanied by the release of brain-derived neurotrophic factor normally retained by polySia molecules. Introduction of a single oxygen atom change into polySia by exogenous feeding of the non-neural sialic acid Neu5Gc (N-glycolylneuraminic acid) caused resistance to Neu1-induced polySia turnover and also inhibited the associated release of brain-derived neurotrophic factor. These results indicate the importance of rapid turnover of the polySia glycocalyx by exovesicular sialidases in neurotrophin regulation.


Assuntos
Membrana Celular/metabolismo , Matriz Extracelular/enzimologia , Glicocálix/metabolismo , Microglia/metabolismo , Fatores de Crescimento Neural/metabolismo , Neuraminidase/metabolismo , Ácidos Siálicos/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Imunofluorescência , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Fatores de Crescimento Neural/genética , Neuraminidase/genética , Oxigênio/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
J Neurosci Res ; 94(1): 74-89, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26389685

RESUMO

Cell adhesion molecules play important roles in the development of the nervous system. Among the contactin-associated protein (Caspr; also known as Cntnap) family, which belongs to the neurexin superfamily of proteins, Caspr and Caspr2 are indispensable for the formation and maintenance of myelinated nerves. In contrast, a physiological role for Caspr3 remains to be elucidated. This study examines the expression and localization of Caspr3 in the mouse brain using newly generated Caspr3 antibodies. Caspr3 was expressed abundantly between the first and the second postnatal weeks. During this period, Caspr3 was localized especially to the basal ganglia, including the striatum, external segment of the globus pallidus, and substantia nigra, and no gross abnormalities were apparent in the basal ganglia of Caspr3 knockout mice. In the striatum, Caspr3 was expressed by a subpopulation of medium spiny neurons that constitute the direct and indirect pathways. Caspr3 immunostaining was observed as punctate around the cell bodies as well as in the soma. These Caspr3 signals did not, however, overlap with those of synaptic markers. Our findings suggest that Caspr3 may play an important role in basal ganglia development during early postnatal stages.


Assuntos
Gânglios da Base/crescimento & desenvolvimento , Gânglios da Base/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Células Cultivadas , Corpo Estriado/citologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Tubulina (Proteína)/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
8.
Chem Pharm Bull (Tokyo) ; 64(2): 189-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26833447

RESUMO

2,3-Dihydro-4-pyranones were synthesized stereoselectively using a chiral phosphine oxide as the catalyst. The phosphine oxide sequentially activated silicon tetrachloride and promoted the double aldol reaction of 4-methoxy-3-buten-2-one with aldehydes. Subsequent stereoselective cyclization afforded the corresponding highly functionalized 2,3-dihydro-4-pyranones bearing three contiguous chiral centers in good yields and with high diastereo- and enantioselectivities.


Assuntos
Óxidos/química , Fosfinas/química , Pironas/síntese química , Catálise , Ciclização , Estrutura Molecular , Pironas/química , Estereoisomerismo
9.
EMBO J ; 30(23): 4739-54, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21946561

RESUMO

The phosphoinositide 3-kinase (PI3K) pathway has been extensively studied in neuronal function and morphogenesis. However, the precise molecular mechanisms of PI3K activation and its downstream signalling in neurons remain elusive. Here, we report the identification of the Neuronal tYrosine-phosphorylated Adaptor for the PI 3-kinase (NYAP) family of phosphoproteins, which is composed of NYAP1, NYAP2, and Myosin16/NYAP3. The NYAPs are expressed predominantly in developing neurons. Upon stimulation with Contactin5, the NYAPs are tyrosine phosphorylated by Fyn. Phosphorylated NYAPs interact with PI3K p85 and activate PI3K, Akt, and Rac1. Moreover, the NYAPs interact with the WAVE1 complex which mediates remodelling of the actin cytoskeleton after activation by PI3K-produced PIP(3) and Rac1. By simultaneously interacting with PI3K and the WAVE1 complex, the NYAPs bridge a PI3K-WAVE1 association. Disruption of the NYAP genes in mice affects brain size and neurite elongation. In conclusion, the NYAPs activate PI3K and concomitantly recruit the downstream effector WAVE complex to the close vicinity of PI3K and regulate neuronal morphogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Encéfalo/patologia , Neocórtex , Neuritos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Encéfalo/embriologia , Citoesqueleto/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Neocórtex/embriologia , Neocórtex/metabolismo , Neocórtex/patologia , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Tirosina/metabolismo
10.
Nat Commun ; 15(1): 4663, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821932

RESUMO

Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid ß precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.


Assuntos
Proteína do Gene 3 de Ativação de Linfócitos , alfa-Sinucleína , Animais , Feminino , Humanos , Masculino , Camundongos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ligação Proteica
11.
Angew Chem Int Ed Engl ; 52(51): 13798-802, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24167150

RESUMO

Diene catalysts with a twist: The title C2 -symmetric tetralin-fused 1,3-butadiene derivative is atropisomeric and can be resolved into the two helical enantiomers. The optically pure compound showed excellent enantioselectivity as well as unusually high catalytic activity as a chiral Lewis basic organocatalyst in the asymmetric allylation of various aldehydes with ß-substituted allyltrichlorosilanes.


Assuntos
Tetra-Hidronaftalenos/síntese química , Catálise , Bases de Lewis , Estrutura Molecular , Polienos , Estereoisomerismo , Tetra-Hidronaftalenos/química
12.
Front Mol Neurosci ; 16: 1280024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098939

RESUMO

The prevalence of allergic conjunctivitis in itchy eyes has increased constantly worldwide owing to environmental pollution. Currently, anti-allergic and antihistaminic eye drops are used; however, there are many unknown aspects about the neural circuits that transmit itchy eyes. We focused on the gastrin-releasing peptide (GRP) and GRP receptor (GRPR), which are reportedly involved in itch transmission in the spinal somatosensory system, to determine whether the GRP system is involved in itch neurotransmission of the eyes in the trigeminal sensory system. First, the instillation of itch mediators, such as histamine (His) and non-histaminergic itch mediator chloroquine (CQ), exhibited concentration-dependent high levels of eye scratching behavior, with a significant sex differences observed in the case of His. Histological analysis revealed that His and CQ significantly increased the neural activity of GRPR-expressing neurons in the caudal part of the spinal trigeminal nucleus of the medulla oblongata in GRPR transgenic mice. We administered a GRPR antagonist or bombesin-saporin to ablate GRPR-expressing neurons, followed by His or CQ instillation, and observed a decrease in CQ-induced eye-scratching behavior in the toxin experiments. Intracisternal administration of neuromedin C (NMC), a GRPR agonist, resulted in dose-dependent excessive facial scratching behavior, despite the absence of an itch stimulus on the face. To our knowledge, this is the first study to demonstrate that non-histaminergic itchy eyes were transmitted centrally via GRPR-expressing neurons in the trigeminal sensory system, and that NMC in the medulla oblongata evoked facial itching.

13.
Dev Biol ; 336(2): 192-200, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19818338

RESUMO

Neural recognition molecule NB-2/contactin 5 is expressed transiently during the first postnatal week in glutamatergic neurons of the central auditory system. Here, we investigated the effect of NB-2 deficiency on the auditory brainstem in mouse. While almost all principal neurons are wrapped with the calyces of Held in the medial nucleus of the trapezoid body (MNTB) in wild type, 8% of principal neurons in NB-2 knockout (KO) mice lack the calyces of Held at postnatal day (P) 6. At P10 and P15, apoptotic principal neurons were detected in NB-2 KO mice, but not in wild type. Apoptotic cells were also increased in the ventral cochlear nucleus (VCN) of NB-2 KO mice, which contains bushy neurons projecting to the MNTB and the lateral superior olive (LSO). At the age of 1 month, the number of principal neurons in the MNTB and of glutamatergic synapses in the LSO was reduced in NB-2 KO mice. Finally, interpeak latencies for auditory brainstem response waves II-III and III-IV were significantly increased in NB-2 KO mice. Together, these findings suggest that NB-2 deficiency causes a deficit in synapse formation and then induces apoptosis in MNTB and VCN neurons, affecting auditory brainstem function.


Assuntos
Vias Auditivas , Moléculas de Adesão Celular Neuronais/fisiologia , Núcleo Coclear/embriologia , Glutamatos/metabolismo , Núcleo Olivar/embriologia , Animais , Anticorpos Monoclonais/imunologia , Apoptose , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/imunologia , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia
14.
J Neurosci Res ; 87(2): 503-13, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18756519

RESUMO

Recent studies of adult neurogenesis of the mammalian central nervous system have suggested unexpected plasticity and complexity of neural cell ontogenesis. Redefinition and reconstitution of cell classification and lineage relationships, especially between glial and neural precursors, are an urgent and crucial concern. In the present study, we describe a new monoclonal antibody, A3B10, which was produced by immunizing mice with the membrane fraction prepared from astrocyte-enriched primary neural cell cultures. Immunohistochemistry of brain sections, including brains from glial fibrillary acidic protein (GFAP)-deficient mice and primary mixed neural cell cultures, as well as immunoblot analysis and immunoelectron microscopy, have revealed that 1) A3B10 recognizes a majority of cells in ependyma in neonatal and adult rats, 2) A3B10 stains almost all GFAP(+) cells and some S100beta(+) cells in the corpus callosum, 3) A3B10 specifically stains astrocytes in vitro in primary cultures of rat embryonic cerebral hemispheres, 4) A3B10 equally stains ependymal cells of wild-type and GFAP-deficient mice, and 5) A3B10 antigen might construct intermediate filament bundles with GFAP and/or vimentin. These data suggested that the antibody labels a wide array of astorcytic-lineage cells including astrocytes, astrocyte precursors, and neural stem cells. Screening a cDNA library derived from rat embryonic brain has revealed that the antibody recognizes calmodulin-regulated spectrin-associated protein 1 (Camsap1). Thus this antibody may provide not only a new marker to identify astrocyte-lineage cells but also a new target molecule to elucidate the ontogeny, development, and pathophysiological functions of astrocyte-lineage cells.


Assuntos
Anticorpos Monoclonais/imunologia , Astrócitos/metabolismo , Proteínas do Tecido Nervoso/imunologia , Células-Tronco/metabolismo , Sequência de Aminoácidos , Animais , Astrócitos/citologia , Biomarcadores , Western Blotting , Encéfalo/metabolismo , Linhagem da Célula , Proteínas do Citoesqueleto , Feminino , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microscopia Imunoeletrônica , Proteínas Associadas aos Microtúbulos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Wistar , Células-Tronco/citologia
15.
J Neurotrauma ; 36(3): 436-447, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30156464

RESUMO

NB-3 (contactin-6) is a member of the contactin family and has a wide range of roles during central nervous system development and disease. Here, we found that NB-3 was simultaneously induced in the serotonergic raphespinal tract (sRST) axons and in the scar-forming cells after spinal cord injury (SCI). Regrowth of sRST axons was promoted in vivo by blocking NB-3 expression in either sRST axons or scar-forming cells when post-traumatic axons of the sRST tried to penetrate the glial scar. NB-3 deficiency promoted synapse reformation between sRST regenerative axons and motor neurons and enhanced the potential for electrical activity of muscle contraction and motor coordination. In vivo evidence also suggested that NB-3 induction in both sRST axons and scar-forming cells was required to mediate NB-3 signaling inhibition of sRST axon regeneration after SCI. Our findings suggest that NB-3 protein is a potential molecular target for future SCI treatments.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Regeneração Nervosa/fisiologia , Neurônios Serotoninérgicos/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Moléculas de Adesão Celular Neuronais/genética , Modelos Animais de Doenças , Eletromiografia , Técnicas de Silenciamento de Genes , Camundongos , Atividade Motora/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Recuperação de Função Fisiológica/fisiologia , Neurônios Serotoninérgicos/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
18.
PLoS One ; 11(1): e0147887, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26807827

RESUMO

Caspr3 (Contactin-associated protein-like 3, Cntnap3) is a neural cell adhesion molecule belonging to the Caspr family. We have recently shown that Caspr3 is expressed abundantly between the first and second postnatal weeks in the mouse basal ganglia, including the striatum, external segment of the globus pallidus, subthalamic nucleus, and substantia nigra. However, its physiological role remains largely unknown. In this study, we conducted a series of behavioral analyses on Capsr3-knockout (KO) mice and equivalent wild-type (WT) mice to investigate the role of Caspr3 in brain function. No significant differences were observed in most behavioral traits between Caspr3-KO and WT mice, but we found that Caspr3-KO mice performed poorly during the early phase of the accelerated rotarod task in which latency to falling off a rod rotating with increasing velocity was examined. In the late phase, the performance of the Caspr3-KO mice caught up to the level of WT mice, suggesting that the deletion of Caspr3 caused a delay in motor learning. We then examined changes in neural activity after training on the accelerated rotarod by conducting immunohistochemistry using antibody to c-Fos, an indirect marker for neuronal activity. Experience of the accelerated rotarod task caused increases in the number of c-Fos-positive cells in the dorsal striatum, cerebellum, and motor cortex in both Caspr3-KO and WT mice, but the number of c-Fos-positive cells was significantly lower in the dorsal striatum of Caspr3-KO mice than in that of WT mice. The expression of c-Fos in the ventral striatum of Caspr3-KO and WT mice was not altered by the training. Our findings suggest that reduced activation of neural cells in the dorsal striatum in Caspr3-KO mice leads to a decline in motor learning in the accelerated rotarod task.


Assuntos
Corpo Estriado/metabolismo , Aprendizagem/fisiologia , Proteínas de Membrana/genética , Destreza Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Cerebelo/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Córtex Motor/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Teste de Desempenho do Rota-Rod
19.
Chem Asian J ; 11(3): 376-9, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26610889

RESUMO

By using a phosphine oxide-catalyzed enantioselective double aldol reaction, we achieved the concise construction of C2 -symmetric 1,9-diarylnonanoids, enabling the synthesis of (-)-ericanone from p-hydroxybenzaldehyde in 6 steps with 65 % overall yield. The enantioselective double aldol reaction is useful for establishing C2 -symmetric 1,9-diaryl-3,7-dihydroxy-5-nonanones with a single operation. Furthermore, the use of o-nosyl-protected p-hydroxybenzaldehyde and a 4,4'-disubstituted BINAP dioxide catalyst dramatically improved the reactivity and selectivity in the double aldol reaction, enabling the total synthesis of (-)-ericanone with high yield and with excellent enantiopurity.


Assuntos
Hidrocarbonetos Aromáticos/síntese química , Silício/química , Aldeídos/química , Benzaldeídos/química , Catálise , Hidrocarbonetos Aromáticos/química , Naftalenos/química , Óxidos/química , Fosfinas/química , Estereoisomerismo
20.
Front Mol Neurosci ; 9: 143, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018171

RESUMO

In view of important neurobiological functions of the cell adhesion molecule contactin-6 (Cntn6) that have emerged from studies on null-mutant mice and autism spectrum disorders patients, we set out to examine pathways underlying functions of Cntn6 using a proteomics approach. We identified the cell adhesion GPCR latrophilin-1 (Lphn1, a.k.a. CIRL1/CL, ADGRL1) as a binding partner for Cntn6 forming together a heteromeric cis-complex. Lphn1 expression in cultured neurons caused reduction in neurite outgrowth and increase in apoptosis, which was rescued by coexpression of Cntn6. In cultured neurons derived from Cntn6-/- mice, Lphn1 knockdown reduced apoptosis, suggesting that the observed apoptosis was Lphn1-dependent. In line with these data, the number of apoptotic cells was increased in the cortex of Cntn6-/- mice compared to wild-type littermate controls. These results show that Cntn6 can modulate the activity of Lphn1 by direct binding and suggests that Cntn6 may prevent apoptosis thereby impinging on neurodevelopment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA