Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Chem Biol ; 19(3): 311-322, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36316570

RESUMO

Targeted protein degradation through chemical hijacking of E3 ubiquitin ligases is an emerging concept in precision medicine. The ubiquitin code is a critical determinant of the fate of substrates. Although two E3s, CRL2VHL and CRL4CRBN, frequently assemble with proteolysis-targeting chimeras (PROTACs) to attach lysine-48 (K48)-linked ubiquitin chains, the diversity of the ubiquitin code used for chemically induced degradation is largely unknown. Here we show that the efficacy of cIAP1-targeting degraders depends on the K63-specific E2 enzyme UBE2N. UBE2N promotes degradation of cIAP1 induced by cIAP1 ligands and subsequent cancer cell apoptosis. Mechanistically, UBE2N-catalyzed K63-linked ubiquitin chains facilitate assembly of highly complex K48/K63 and K11/K48 branched ubiquitin chains, thereby recruiting p97/VCP, UCH37 and the proteasome. Degradation of neo-substrates directed by cIAP1-recruiting PROTACs also depends on UBE2N. These results reveal an unexpected role for K63-linked ubiquitin chains and UBE2N in degrader-induced proteasomal degradation and demonstrate the diversity of the ubiquitin code used for chemical hijacking.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitina/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
2.
Mol Cell Proteomics ; 22(11): 100664, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832787

RESUMO

Arginylation is a post-translational modification mediated by the arginyltransferase 1 (ATE1), which transfers the amino acid arginine to a protein or peptide substrate from a tRNA molecule. Initially, arginylation was thought to occur only on N-terminally exposed acidic residues, and its function was thought to be limited to targeting proteins for degradation. However, more recent data have shown that ATE1 can arginylate side chains of internal acidic residues in a protein without necessarily affecting metabolic stability. This greatly expands the potential targets and functions of arginylation, but tools for studying this process have remained limited. Here, we report the first global screen specifically for side-chain arginylation. We generate and validate "pan-arginylation" antibodies, which are designed to detect side-chain arginylation in any amino acid sequence context. We use these antibodies for immunoaffinity enrichment of side-chain arginylated proteins from wildtype and Ate1 knockout cell lysates. In this way, we identify a limited set of proteins that likely undergo ATE1-dependent side-chain arginylation and that are enriched in specific cellular roles, including translation, splicing, and the cytoskeleton.


Assuntos
Aminoaciltransferases , Aminoaciltransferases/metabolismo , Proteínas/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Anticorpos/metabolismo , Arginina/metabolismo
3.
J Am Chem Soc ; 145(25): 14019-14030, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37319422

RESUMO

N-terminal acetylation is a chemical modification carried out by N-terminal acetyltransferases. A major member of this enzyme family, NatB, acts on much of the human proteome, including α-synuclein (αS), a synaptic protein that mediates vesicle trafficking. NatB acetylation of αS modulates its lipid vesicle binding properties and amyloid fibril formation, which underlies its role in the pathogenesis of Parkinson's disease. Although the molecular details of the interaction between human NatB (hNatB) and the N-terminus of αS have been resolved, whether the remainder of the protein plays a role in interacting with the enzyme is unknown. Here, we execute the first synthesis, by native chemical ligation, of a bisubstrate inhibitor of NatB consisting of coenzyme A and full-length human αS, additionally incorporating two fluorescent probes for studies of conformational dynamics. We use cryo-electron microscopy (cryo-EM) to characterize the structural features of the hNatB/inhibitor complex and show that, beyond the first few residues, αS remains disordered when in complex with hNatB. We further probe changes in the αS conformation by single molecule Förster resonance energy transfer (smFRET) to reveal that the C-terminus expands when bound to hNatB. Computational models based on the cryo-EM and smFRET data help to explain the conformational changes as well as their implications for hNatB substrate recognition and specific inhibition of the interaction with αS. Beyond the study of αS and NatB, these experiments illustrate valuable strategies for the study of challenging structural biology targets through a combination of protein semi-synthesis, cryo-EM, smFRET, and computational modeling.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Acetiltransferases N-Terminal , Microscopia Crioeletrônica
4.
J Am Chem Soc ; 144(17): 7911-7918, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35451816

RESUMO

Arginylation is an understudied post-translational modification (PTM) involving the transfer of arginine to aspartate or glutamate sidechains in a protein. Among the targets of this PTM is α-synuclein (αS), a neuronal protein involved in regulating synaptic vesicles. The aggregation of αS is implicated in neurodegenerative diseases, particularly in Parkinson's disease, and arginylation has been found to protect against this pathological process. Arginylated αS has been studied through semisynthesis involving multipart native chemical ligation (NCL), but this can be very labor-intensive with low yields. Here, we present a facile way to introduce a mimic of the arginylation modification into a protein of interest, compatible with orthogonal installation of labels such as fluorophores. We synthesize bromoacetyl arginine and react it with recombinant, site-specific cysteine mutants of αS. We validate the mimic by testing the vesicle binding affinity of mimic-arginylated αS, as well as its aggregation kinetics and monomer incorporation into fibrils, and comparing these results to those of authentically arginylated αS produced through NCL. In cultured neurons, we compare the fibril seeding capabilities of preformed fibrils carrying a small percentage of arginylated αS. We find that, consistent with authentically arginylated αS, mimic-arginylated αS does not perturb the protein's native function but alters aggregation kinetics and monomer incorporation. Both mimic and authentically modified αS suppress aggregation in neuronal cells. Our results provide further insight into the neuroprotective effects of αS arginylation, and our alternative strategy to generate arginylated αS enables the study of this PTM in proteins not accessible through NCL.


Assuntos
Fármacos Neuroprotetores , alfa-Sinucleína , Arginina/metabolismo , Cisteína/metabolismo , Fármacos Neuroprotetores/farmacologia , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/metabolismo
5.
J Am Chem Soc ; 142(52): 21786-21798, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33337869

RESUMO

A variety of post-translational modifications (PTMs) are believed to regulate the behavior and function of α-synuclein (αS), an intrinsically disordered protein that mediates synaptic vesicle trafficking. Fibrils of αS are implicated in neurodegenerative disorders such as Parkinson's disease. In this study, we used chemical synthesis and biophysical techniques to characterize the neuroprotective effects of glutamate arginylation, a hitherto little characterized PTM in αS. We developed semisynthetic routes combining peptide synthesis, unnatural amino acid mutagenesis, and native chemical ligation (NCL) to site-specifically introduce the PTM of interest along with fluorescent probes into αS. We synthesized the arginylated glutamate as a protected amino acid, as well as a novel ligation handle for NCL, in order to generate full-length αS modified at various individual sites or a combination of sites. We assayed the lipid-vesicle binding affinities of arginylated αS using fluorescence correlation spectroscopy (FCS) and found that arginylated αS has the same vesicle affinity compared to control protein, suggesting that this PTM does not alter the native function of αS. On the other hand, we studied the aggregation kinetics of modified αS and found that arginylation at E83, but not E46, slows aggregation and decreases the percentage incorporation of monomer into fibrils in a dose-dependent manner. Arginylation at both sites also resulted in deceleration of fibril formation. Our study represents the first synthetic strategy for incorporating glutamate arginylation into proteins and provides insight into the neuroprotective effect of this unusual PTM.


Assuntos
Ácido Glutâmico/metabolismo , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Sítios de Ligação , Mutagênese , Espectrometria de Fluorescência , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
6.
Methods Mol Biol ; 2620: 177-207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010763

RESUMO

Solid-phase peptide synthesis and protein semi-synthesis are powerful methods for site-specific modification of peptides and proteins. We describe protocols using these techniques for the syntheses of peptides and proteins bearing glutamate arginylation (EArg) at specific sites. These methods overcome challenges posed by enzymatic arginylation methods and allow for a comprehensive study of the effects of EArg on protein folding and interactions. Potential applications include biophysical analyses, cell-based microscopic studies, and profiling of EArg levels and interactomes in human tissue samples.


Assuntos
Ácido Glutâmico , Processamento de Proteína Pós-Traducional , Humanos , Ácido Glutâmico/metabolismo , Proteínas/metabolismo , Peptídeos/metabolismo , Arginina/metabolismo
7.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066334

RESUMO

N-terminal acetylation is a chemical modification carried out by N-terminal acetyltransferases (NATs). A major member of this enzyme family, NatB, acts on much of the human proteome, including α-synuclein (αS), a synaptic protein that mediates vesicle trafficking. NatB acetylation of αS modulates its lipid vesicle binding properties and amyloid fibril formation, which underlies its role in the pathogenesis of Parkinson's disease. Although the molecular details of the interaction between human NatB (hNatB) and the N-terminus of αS have been resolved, whether the remainder of the protein plays a role in interacting with the enzyme is unknown. Here we execute the first synthesis, by native chemical ligation, of a bisubstrate inhibitor of NatB consisting of coenzyme A and full-length human αS, additionally incorporating two fluorescent probes for studies of conformational dynamics. We use cryo-electron microscopy (cryo-EM) to characterize the structural features of the hNatB/inhibitor complex and show that, beyond the first few residues, αS remains disordered when in complex with hNatB. We further probe changes in the αS conformation by single molecule Förster resonance energy transfer (smFRET) to reveal that the C-terminus expands when bound to hNatB. Computational models based on the cryo-EM and smFRET data help to explain the conformational changes and their implications for hNatB substrate recognition and specific inhibition of the interaction with αS. Beyond the study of αS and NatB, these experiments illustrate valuable strategies for the study of challenging structural biology targets through a combination of protein semi-synthesis, cryo-EM, smFRET, and computational modeling.

8.
J Mol Biol ; 434(23): 167859, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36270580

RESUMO

Fibrillar aggregates of the α-synuclein (αS) protein are the hallmark of Parkinson's Disease and related neurodegenerative disorders. Characterization of the effects of mutations and post-translational modifications (PTMs) on the αS aggregation rate can provide insight into the mechanism of fibril formation, which remains elusive in spite of intense study. A comprehensive collection (375 examples) of mutant and PTM aggregation rate data measured using the fluorescent probe thioflavin T is presented, as well as a summary of the effects of fluorescent labeling on αS aggregation (20 examples). A curated set of 131 single mutant de novo aggregation experiments are normalized to wild type controls and analyzed in terms of structural data for the monomer and fibrillar forms of αS. These tabulated data serve as a resource to the community to help in interpretation of aggregation experiments and to potentially be used as inputs for computational models of aggregation.


Assuntos
Agregados Proteicos , Processamento de Proteína Pós-Traducional , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/genética , Amiloide/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Agregados Proteicos/genética
9.
Transl Neurodegener ; 11(1): 20, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395956

RESUMO

BACKGROUND: Alpha-synuclein (α-syn) exhibits pathological misfolding in many human neurodegenerative disorders. We previously showed that α-syn is arginylated in the mouse brain and that lack of arginylation leads to neurodegeneration in mice. METHODS: Here, we tested α-syn arginylation in human brain pathology using newly derived antibodies in combination with Western blotting, biochemical assays, and experiments in live neurons. RESULTS: We found that α-syn was arginylated in the human brain on E46 and E83, two sites previously implicated in α-syn pathology and familial cases of Parkinson's disease. The levels of arginylation in different brain samples ranged between ~ 3% and ~ 50% of the total α-syn pool, and this arginylation nearly exclusively concentrated in the subcellular α-syn fraction that sedimented at low centrifugation speeds and appeared to be simultaneously targeted by multiple posttranslational modifications. Arginylated α-syn was less susceptible to S129 phosphorylation and pathological aggregation in neurons. The arginylation level inversely correlated with the overall α-syn levels and with patient age, suggesting a possible causal relationship between arginylation decline and α-syn-dependent neuropathology. CONCLUSION: We propose that α-syn arginylation constitutes a potential neuroprotective mechanism that prevents its abnormal accumulation during neurodegeneration and aging in the human brain.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Sinucleinopatias , Animais , Encéfalo/metabolismo , Humanos , Camundongos , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
10.
Curr Opin Chem Biol ; 64: 57-66, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34091264

RESUMO

Amyloid proteins are widely studied, both for their unusual biophysical properties and their association with disorders such as Alzheimer's and Parkinson's disease. Fluorescence-based methods using site-specifically labeled proteins can provide information on the details of their structural dynamics and their roles in specific biological processes. Here, we describe the application of different labeling methods and novel fluorescent probe strategies to the study of amyloid proteins, both for in vitro biophysical experiments and for in vivo imaging. These labeling tools can be elegantly used to answer important questions on the function and pathology of amyloid proteins.


Assuntos
Doença de Alzheimer , alfa-Sinucleína , Doença de Alzheimer/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Corantes Fluorescentes , Humanos , Coloração e Rotulagem , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA