Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 582: 86-92, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695755

RESUMO

The cellular glucose level has to be tightly regulated by a variety of cellular processes. One of them is the degradation of gluconeogenic enzymes such as Fbp1, Icl1, Mdh2, and Pck1 by GID (glucose-induced degradation deficient) E3 ubiquitin ligase. The Gid4 component of the GID ligase complex is responsible for recognizing the N-terminal proline residue of the target substrates under normal conditions. However, an alternative N-recognin Gid10 controls the degradation process under stressed conditions. Although Gid10 shares a high sequence similarity with Gid4, their substrate specificities are quite different. Here, we report the structure of Gid10 from Saccharomyces cerevisiae in complex with Pro/N-degron, Pro-Tyr-Ile-Thr, which is almost identical to the sequence of the natural substrate Art2. Although Gid10 shares many structural features with the Gid4 protein from yeast and humans, the current structure explains the unique structural difference for the preference of bulky hydrophobic residue at the second position of Pro/N-degron. Therefore, this study provides a fundamental basis for understanding of the structural diversity and substrate specificity of recognition components in the GID E3 ligase complex involved in the Pro/N-degron pathway.


Assuntos
Oligopeptídeos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligases/química , Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Oligopeptídeos/metabolismo , Prolina/química , Prolina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Plant Cell Rep ; 40(4): 677-689, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33492497

RESUMO

KEY MESSAGE: TCX8 localizes to nucleus and has transcriptional repression activity. TCX8 binds to the promoter region of LOX2 encoding lipoxygenase, causing JA biosynthesis suppression, and thereby delays plant senescence. Conserved CXC domain-containing proteins are found in most eukaryotes. Eight TCX proteins, which are homologs of animal CXC-Hinge-CXC (CHC) proteins, were identified in Arabidopsis, and three of them, TSO1, TCX2/SOL2 and TCX3/SOL1, have been reported to affect cell-cycle control. TCX8, one of the TCX family proteins, was believed to be a TF but its precise function has not been reported. Yeast two-hybrid screening revealed TCP20, a TF that binds to the promoter of LOX2 encoding lipoxygenase, as a strong candidate for interaction with TCX8. We confirmed that TCX8 directly interacts with TCP20 using in vitro pull-down assay and in vivo BiFC and observed that TCX8, as a TF, localizes to nucleus. Using EMSA and by analyzing phenotypes of TCX8-overexpression lines, we demonstrated that TCX8 regulates the expression of LOX2 by binding to either cis-element of LOX2 promoter to which TCP20 or TCP4 binds, affecting JA biosynthesis, and thereby delaying plant senescence. Our study provides new information about the role of TCX8 in modulating plant senescence through regulating LOX2 expression.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Lipoxigenases/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lipoxigenases/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
3.
New Phytol ; 209(2): 664-78, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26315131

RESUMO

Calmodulins (CaMs) regulate numerous Ca(2+) -mediated cellular processes in plants by interacting with their respective downstream effectors. Due to the limited number of CaMs, other calcium sensors modulate the regulation of Ca(2+) -mediated cellular processes that are not managed by CaMs. Of 50 CaM-like (CML) proteins identified in Arabidopsis thaliana, we characterized the function of CML10. Yeast two-hybrid screening revealed phosphomannomutase (PMM) as a putative interaction partner of CML10. In vitro and in vivo interaction assays were performed to analyze the interaction mechanisms of CML10 and PMM. PMM activity and the phenotypes of cml10 knock-down mutants were studied to elucidate the role(s) of the CML10-PMM interaction. PMM interacted specifically with CML10 in the presence of Ca(2+) through its multiple interaction motifs. This interaction promoted the activity of PMM. The phenotypes of cml10 knock-down mutants were more sensitive to stress conditions than wild-type plants, corresponding with the fact that PMM is an enzyme which modulates the biosynthesis of ascorbic acid, an antioxidant. The results of this research demonstrate that a calcium sensor, CML10, which is an evolutionary variant of CaM, modulates the stress responses in Arabidopsis by regulating ascorbic acid production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácido Ascórbico/biossíntese , Calmodulina/metabolismo , Fosfotransferases (Fosfomutases)/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácido Ascórbico/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Regulação da Expressão Gênica de Plantas , Mutação , Estresse Oxidativo/fisiologia , Fosfotransferases (Fosfomutases)/genética , Domínios e Motivos de Interação entre Proteínas , Técnicas do Sistema de Duplo-Híbrido
4.
Protein Sci ; 30(3): 700-708, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33368743

RESUMO

The N-degron pathway determines the half-life of proteins in both prokaryotes and eukaryotes by precisely recognizing the N-terminal residue (N-degron) of substrates. ClpS proteins from bacteria bind to substrates containing hydrophobic N-degrons (Leu, Phe, Tyr, and Trp) and deliver them to the caseinolytic protease system ClpAP. This mechanism is preserved in organelles such as mitochondria and chloroplasts. Bacterial ClpS adaptors bind preferentially to Leu and Phe N-degrons; however, ClpS1 from Arabidopsis thaliana (AtClpS1) shows a difference in that it binds strongly to Phe and Trp N-degrons and only weakly to Leu. This difference in behavior cannot be explained without structural information due to the high sequence homology between bacterial and plant ClpS proteins. Here, we report the structure of AtClpS1 at 2.0 Å resolution in the presence of a bound N-degron. The key determinants for α-amino group recognition are conserved among all ClpS proteins, but the α3-helix of eukaryotic AtClpS1 is significantly shortened, and consequently, a loop forming a pocket for the N-degron is moved slightly outward to enlarge the pocket. In addition, amino acid replacement from Val to Ala causes a reduction in hydrophobic interactions with Leu N-degron. A combination of the fine-tuned hydrophobic residues in the pocket and the basic gatekeeper at the entrance of the pocket controls the N-degron selectivity of the plant ClpS protein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Aminoácidos , Proteínas de Arabidopsis , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteólise , Especificidade por Substrato
5.
Plant Sci ; 294: 110458, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32234226

RESUMO

Despite being toxic at a high concentrations, reactive oxygen species (ROS) play a pivotal role as signaling molecules in responses to stress and regulation of plant development. The mitochondrial electron transport chain (ETC) is the major source of ROS in cells. Although the regulation of ROS in mitochondria has been well elucidated, the protein-protein interaction-based regulation of ETC members has not been well elucidated. In this study, we identified a CBS domain-containing protein, CBSX3, and found that CBSX3 activates o-type thioredoxin (Trx-o2) in mitochondria. In addition, we found that Trx-o2 interacts with SDH1, a subunit of ETC complex II. Knockdown (KD) of CBSX3 revealed anther indehiscence due to deficient lignin deposition caused by insufficient ROS accumulation, and increased expression of genes related to cell cycle and accelerated plant growth. However, in the CBSX3-overexpression plants, ROS accumulation increased, and cell cycle-related gene expression decreased, and thereby plant growth was retarded and leaf size decreased. Moreover, KD of CBSX3 and Trx-o2 conferred resistance to mitochondria ETC inhibitors in terms of ROS release. Taken together, we suggest that CBSX3-Trx-o2 is a ROS generation regulator of mitochondria in plants and plays an important role in regulating plant development and the redox system.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Tiorredoxinas/metabolismo
6.
FEBS Lett ; 594(6): 986-994, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31701529

RESUMO

Plant thioredoxins (Trxs) act as antioxidants and function as redox regulators in the chloroplast. Although the regulation of ROS in chloroplasts is well elucidated, the precise regulation mechanism of Trx remains unknown. Here, we characterize a novel chloroplast protein, Lon domain-containing protein 1 (LCP1), which contains only a Lon domain, the precise function of which is not known. We find that LCP1 interacts with Trx-y2 and represses its activity, and that knockdown (KD) of LCP1 causes anther indehiscence due to deficient lignin deposition. In addition, LCP1 KD plants show less ROS accumulation and lower expression of ROS-responsive marker genes than the wild-type plant. Taken together, we suggest that LCP1 directly regulates Trx-y2 and controls H2 O2 levels and, thereby, regulates lignin polymerization in the anther endothecium.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Tiorredoxinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Peróxido de Hidrogênio/metabolismo , Lignina/biossíntese , Lignina/genética , Tiorredoxinas/genética
7.
J Plant Physiol ; 255: 153292, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33069038

RESUMO

Osmotic stress, caused by drought, salinity, or PEG (polyethylene glycol), is one of the most important abiotic factors that hinder plant growth and development. In Arabidopsis, more than 100 R2R3-MYB transcription factors (TFs) have been identified, and many of them are involved in the transcriptional regulation of a variety of biological processes related to growth and development, as well as responses to biotic and abiotic stresses. However, the MYB TF involving in both plant development and stress response has rarely been reported. We report here that Arabidopsis AtMYB109, a R2R3-MYB TF, functions as a negative regulator of stomatal closure under osmotic stress as well as of pollen tube elongation. Under PEG-induced osmotic stress, whole leaves of AtMYB109-OXs were intensely wilted, while leaves of the wild-type (WT) and myb109 were weakly affected. Moreover, we confirmed that the wilting in AtMYB109-OXs was more severe than in WT and myb109 under drought conditions, and that after re-watering, WT and myb109 plants promptly recovered, while AtMYB109-OXs failed to survive. In addition, stomatal closure was delayed in the AtMYB109-OXs compared to the WT and myb109. However, proline content and the expression of stress-induced and proline synthesis genes were higher in the overexpression lines than in WT and myb109. Then, we observed that the expression of ICS1, a key gene in SA biosynthesis, was greatly suppressed in AtMYB109-OXs. In addition, we found that AtMYB109 expression gradually increased until the flowers were fully opened and thereafter dramatically decreased during silique development. The pollen tube growth was significantly suppressed in AtMYB109-OXs compared to the WT and myb109. Using EMSA and ChIP-qPCR, we confirmed that AtMYB109 bound to the promoter of RABA4D, a gene encoding a pollen development regulator. Taken together, we suggest the delayed stomatal closing and vulnerable phenotypes in the AtMYB109-OXs under osmotic stress are possibly directly or indirectly associated with a SA-mediated mechanism, and that AtMYB109 suppresses RABA4D that modulates pollen tube growth.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Estresse Fisiológico/fisiologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Genes de Plantas , Pressão Osmótica/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA