Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 15: 552, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215971

RESUMO

BACKGROUND: The prognosis of patients with Ewing sarcoma (ES) has improved over the course of the last decades. However, those patients suffering from metastatic and recurrent ES still have only poor chances of survival and require new therapeutic approaches. Interleukin-6 (IL6) is a pleiotropic cytokine expressed by immune cells and a great variety of cancer cells. It induces inflammatory responses, enhances proliferation and inhibits apoptosis in cancer cells, thereby promoting chemoresistance. METHODS: We investigated expression of IL6, its receptors and the IL6 signal transduction pathway in ES tumor samples and cell lines applying reverse transcriptase PCR, immunoblot and immunohistochemistry. The impact of IL6 on cell viability and apoptosis in ES cell lines was analyzed by MTT and propidium iodide staining, migration assessed by chorioallantoic membrane (CAM) assay. RESULTS: Immunohistochemistry proved IL6 expression in the stroma of ES tumor samples. IL6 receptor subunits IL6R and IL6ST were expressed on the surface of ES cells. Treatment of ES cells with rhIL6 resulted in phosphorylation of STAT3. rhIL6 protected ES cells from serum starvation-induced apoptosis and promoted migration. IL6 blood serum levels were elevated in a subgroup of ES patients with poor prognosis. CONCLUSIONS: These data suggest that IL6 contributes to ES tumor progression by increasing resistance to apoptosis in conditions of cellular stress, such as serum starvation, and by promotion of metastasis.


Assuntos
Neoplasias Ósseas/imunologia , Interleucina-6/metabolismo , Comunicação Parácrina , Receptores de Interleucina-6/metabolismo , Sarcoma de Ewing/imunologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Progressão da Doença , Humanos , Interleucina-6/genética , Fosforilação , Receptores de Interleucina-6/genética , Fator de Transcrição STAT3/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Microambiente Tumoral
2.
PLoS One ; 16(5): e0251765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33999935

RESUMO

Since growing tumors stimulate angiogenesis, via vascular endothelial growth factor (VEGF), angiogenesis inhibitors (AIs, blockers of the VEGF signaling pathway) have been introduced to cancer therapy. However, AIs often yielded only modest and short-lived gains in cancer patients and more invasive tumor phenotypes in animal models. Combining anti-VEGF strategies with lactate uptake blockers may boost both efficacy and safety of AIs. We assessed this hypothesis by using the ex ovo chorioallantoic membrane (CAM) assay. We show that AI-based monotherapy (Avastin®, AVA) increases tumor hypoxia in human CAM cancer cell xenografts and cell spread in human as well as canine CAM cancer cell xenografts. In contrast, combining AVA treatment with lactate importer MCT1 inhibitors (α-cyano-4-hydroxycinnamic acid (CHC) or AZD3965 (AZD)) reduced both tumor growth and cell dissemination of human and canine explants. Moreover, combining AVA+AZD diminished blood perfusion and tumor hypoxia in human explants. Thus, the ex ovo CAM assay as an easy, fast and cheap experimental setup is useful for pre-clinical cancer research. Moreover, as an animal-free experimental setup the CAM assay can reduce the high number of laboratory animals used in pre-clinical cancer research.


Assuntos
Inibidores da Angiogênese/farmacologia , Membrana Corioalantoide , Neoplasias Experimentais , Neovascularização Patológica , Consumo de Oxigênio/efeitos dos fármacos , Pirimidinonas/farmacologia , Tiofenos/farmacologia , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/patologia , Cães , Humanos , Camundongos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Simportadores/antagonistas & inibidores , Simportadores/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Cancer Res ; 9(11): 1520-36, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21984181

RESUMO

Rampant activity of the hypoxia-inducible factor (HIF)-1 in cancer is frequently associated with the malignant progression into a harder-to-treat, increasingly aggressive phenotype. Clearly, anti-HIF strategies in cancer cells are of considerable clinical interest. One way to fine-tune, or inhibit, HIF's transcriptional outflow independently of hydroxylase activities could be through competing transcription factors. A CACGTG-binding activity in human hepatoma cells was previously found to restrict HIF's access to hypoxia response cis-elements (HRE) in a Daphnia globin gene promoter construct (phb2). The CACGTG factor, and its impact on hypoxia-responsive human genes, was analyzed in this study by genome-wide computational scans as well as gene-specific quantitative PCR, reporter and DNA-binding assays in hepatoma (Hep3B), cervical carcinoma (HeLa), and breast carcinoma (MCF7) cells. Among six basic helix-loop-helix transcription factors known to target CACGTG palindromes, we identified upstream stimulatory factor (USF)-1/2 as predominant phb2 CACGTG constituents in Hep3B, HeLa, and MCF7 cells. Human genes with adjacent or overlapping HRE and CACGTG motifs included with lactate dehydrogenase A (LDHA) and Bcl-2/E1B 19 kDa interacting protein 3 (BNIP3) hypoxia-induced HIF-1 targets. Parallel recruitment of HIF-1α and USF1/2a to the respective promoter chromatin was verified for all cell lines investigated. Mutual complementing (LDHA) or moderating (BNIP3) cross-talk was seen upon overexpression or silencing of HIF-1α and USF1/2a. Distinct (LDHA) or overlapping (BNIP3) promoter-binding sites for HIF-1 and USFs were subsequently characterized. We propose that, depending on abundance or activity of its protein constituents, O(2)-independent USF signaling can function to fine-tune or interfere with HIF-mediated transcription in cancer cells.


Assuntos
Elementos E-Box , Fator 1 Induzível por Hipóxia/genética , Sequências Repetidas Invertidas , Fatores Estimuladores Upstream/genética , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Proibitinas , Elementos de Resposta , Transdução de Sinais , Transfecção , Fatores Estimuladores Upstream/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA