Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Am Chem Soc ; 146(6): 4153-4161, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300827

RESUMO

Separating ethane (C2H6) from ethylene (C2H4) is an essential and energy-intensive process in the chemical industry. Here, we report two flexible diamondoid coordination networks, X-dia-1-Ni and X-dia-1-Ni0.89Co0.11, that exhibit gate-opening between narrow-pore (NP) and large-pore (LP) phases for C2H6, but not for C2H4. X-dia-1-Ni0.89Co0.11 thereby exhibited a type F-IV isotherm at 273 K with no C2H6 uptake and a high uptake (111 cm3 g-1, 1 atm) for the NP and LP phases, respectively. Conversely, the LP phase exhibited a low uptake of C2H4 (12.2 cm3 g-1). This C2H6/C2H4 uptake ratio of 9.1 for X-dia-1-Ni0.89Co0.11 far surpassed those of previously reported physisorbents, many of which are C2H4-selective. In situ variable-pressure X-ray diffraction and modeling studies provided insight into the abrupt C2H6-induced structural NP to LP transformation. The promise of pure gas isotherms and, more generally, flexible coordination networks for gas separations was validated by dynamic breakthrough studies, which afforded high-purity (99.9%) C2H4 in one step.

2.
Phys Chem Chem Phys ; 25(40): 27065-27074, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37792449

RESUMO

Organic co-crystals have emerged as a promising class of semiconductors for next-generation optoelectronic devices due to their unique photophysical properties. This paper presents a joint experimental-theoretical study comparing the crystal structure, spectroscopy, and electronic structure of two charge transfer co-crystals. Reported herein is a novel co-crystal Npe:TCNQ, formed from 4-(1-naphthylvinyl)pyridine (Npe) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) via molecular self-assembly. This work also presents a revised study of the co-crystal composed of Npe and 1,2,4,5-tetracyanobenzene (TCNB) molecules, Npe:TCNB, herein reported with a higher-symmetry (monoclinic) crystal structure than previously published. Npe:TCNB and Npe:TCNQ dimer clusters are used as theoretical model systems for the co-crystals; the geometries of the dimers are compared to geometries of the extended solids, which are computed with periodic boundary conditions density functional theory. UV-Vis absorption spectra of the dimers are computed with time-dependent density functional theory and compared to experimental UV-Vis diffuse reflectance spectra. Both Npe:TCNB and Npe:TCNQ are found to exhibit neutral character in the S0 state and ionic character in the S1 state. The high degree of charge transfer in the S1 state of both Npe:TCNB and Npe:TCNQ is rationalized by analyzing the changes in orbital localization associated with the S1 transitions.

3.
Angew Chem Int Ed Engl ; 62(39): e202308438, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37534579

RESUMO

Porous sorbents are materials that are used for various applications, including storage and separation. Typically, the uptake of a single gas by a sorbent decreases with temperature, but the relative affinity for two similar gases does not change. However, in this study, we report a rare example of "crossover sorption," in which the uptake capacity and apparent affinity for two similar gases reverse at different temperatures. We synthesized two soft porous coordination polymers (PCPs), [Zn2 (L1)(L2)2 ]n (PCP-1) and [Zn2 (L1)(L3)2 ]n (PCP-2) (L1= 1,4-bis(4-pyridyl)benzene, L2=5-methyl-1,3-di(4-carboxyphenyl)benzene, and L3=5-methoxy-1,3-di(4-carboxyphenyl)benzene). These PCPs exhibits structural changes upon gas sorption and show the crossover sorption for both C2 H2 /CO2 and C2 H6 /C2 H4 , in which the apparent affinity reverse with temperature. We used in situ gas-loading single-crystal X-ray diffraction (SCXRD) analysis to reveal the guest inclusion structures of PCP-1 for C2 H2 , CO2 , C2 H6 , and C2 H4 gases at various temperatures. Interestingly, we observed three-step single-crystal to single-crystal (sc-sc) transformations with the different loading phases under these gases, providing insight into guest binding positions, nature of host-guest or guest-guest interactions, and their phase transformations upon exposure to these gases. Combining with theoretical investigation, we have fully elucidated the crossover sorption in the flexible coordination networks, which involves a reversal of apparent affinity and uptake of similar gases at different temperatures. We discovered that this behaviour can be explained by the delicate balance between guest binding and host-guest and guest-guest interactions.

4.
Angew Chem Int Ed Engl ; 62(47): e202309985, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37770385

RESUMO

We report that linker ligand substitution involving just one atom induces a shape-memory effect in a flexible coordination network. Specifically, whereas SIFSIX-23-Cu, [Cu(SiF6 )(L)2 ]n , (L=1,4-bis(1-imidazolyl)benzene, SiF6 2- =SIFSIX) has been previously reported to exhibit reversible switching between closed and open phases, the activated phase of SIFSIX-23-CuN , [Cu(SiF6 )(LN )2 ]n (LN =2,5-bis(1-imidazolyl)pyridine), transformed to a kinetically stable porous phase with strong affinity for CO2 . As-synthesized SIFSIX-23-CuN , α, transformed to less open, γ, and closed, ß, phases during activation. ß did not adsorb N2 (77 K), rather it reverted to α induced by CO2 at 195, 273 and 298 K. CO2 desorption resulted in α', a shape-memory phase which subsequently exhibited type-I isotherms for N2 (77 K) and CO2 as well as strong performance for separation of CO2 /N2 (15/85) at 298 K and 1 bar driven by strong binding (Qst =45-51 kJ/mol) and excellent CO2 /N2 selectivity (up to 700). Interestingly, α' reverted to ß after re-solvation/desolvation. Molecular simulations and density functional theory (DFT) calculations provide insight into the properties of SIFSIX-23-CuN .

5.
Angew Chem Int Ed Engl ; 61(15): e202201017, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35132777

RESUMO

The enrichment and purification of coal-bed methane provides a source of energy and helps offset global warming. In this work, we demonstrate a strategy involving the regulation of the pore size and pore chemistry to promote the separation of CH4 /N2 mixtures in four nickel-based coordination networks, named Ni(ina)2 , Ni(3-ain)2 , Ni(2-ain)2 , and Ni(pba)2 , (where ina=isonicotinic acid, 3-ain=3-aminoisonicotinic acid, 2-ain=2-aminoisonicotinic acid, and pba=4-(4-pyridyl)benzoic acid). Among them, Ni(ina)2 and Ni(3-ain)2 can effectively separate CH4 from N2 with top-performing performance because of the suitable pore size (≈0.6 and 0.5 nm) and pore environment. Explicitly, Ni(ina)2 exhibits the highest ever reported CH4 /N2 selectivity of 15.8 and excellent CH4 uptake (40.8 cm3 g-1 ) at ambient conditions, thus setting new benchmarks for all reported MOFs and traditional adsorbents. The exceptional CH4 /N2 separation performance of Ni(ina)2 is confirmed by dynamic breakthrough experiments. Under different CH4 /N2 ratios, Ni(ina)2 selectively extracts methane from the gaseous blend and produces a high purity of CH4 (99 %). Theoretical calculations and CH4 -loading single-crystal structure analysis provide critical insight into the adsorption/separation mechanism. Ni(ina)2 and Ni(3-ain)2 can form rich intermolecular interactions with methane, indicating a strong adsorption affinity between pore walls and CH4 molecules. Importantly, Ni(ina)2 has good thermal and moisture stability and can easily be scaled up at a low cost ($25 per kilogram), which will be valuable for potential industrial applications. Overall, this work provides a powerful approach for the selective adsorption of CH4 from coal-bed methane.

6.
Angew Chem Int Ed Engl ; 60(21): 11688-11694, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33594724

RESUMO

Controlling gas sorption by simple pore modification is important in molecular recognition and industrial separation processes. In particular, it is challenging to realize the inverse selectivity, which reduces the adsorption of a high-affinity gas and increases the adsorption of a low-affinity gas. Herein, an "opposite action" strategy is demonstrated for boosting CO2 /C2 H2 selectivity in porous coordination polymers (PCPs). A precise steric design of channel pores using an amino group as an additional interacting site enabled the synergetic increase in CO2 adsorption while suppressing the C2 H2 adsorption. Based on this strategy, two new ultramicroporous PCP physisorbents that are isostructural were synthesised. They exhibited the highest CO2 uptake and CO2 /C2 H2 volume uptake ratio at 298 K. Origin of this specific selectivity was verified by detailed density functional theory calculations. The breakthrough separation performances with remarkable stability and recyclability of both the PCPs render them relevant materials for C2 H2 purification from CO2 /C2 H2 mixtures.

7.
Angew Chem Int Ed Engl ; 60(37): 20383-20390, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34250717

RESUMO

Structural changes at the active site of an enzyme induced by binding to a substrate molecule can result in enhanced activity in biological systems. Herein, we report that the new hybrid ultramicroporous material sql-SIFSIX-bpe-Zn exhibits an induced fit binding mechanism when exposed to acetylene, C2 H2 . The resulting phase change affords exceptionally strong C2 H2 binding that in turn enables highly selective C2 H2 /C2 H4 and C2 H2 /CO2 separation demonstrated by dynamic breakthrough experiments. sql-SIFSIX-bpe-Zn was observed to exhibit at least four phases: as-synthesised (α); activated (ß); and C2 H2 induced phases (ß' and γ). sql-SIFSIX-bpe-Zn-ß exhibited strong affinity for C2 H2 at ambient conditions as demonstrated by benchmark isosteric heat of adsorption (Qst ) of 67.5 kJ mol-1 validated through in situ pressure gradient differential scanning calorimetry (PG-DSC). Further, in situ characterisation and DFT calculations provide insight into the mechanism of the C2 H2 induced fit transformation, binding positions and the nature of host-guest and guest-guest interactions.

8.
Angew Chem Int Ed Engl ; 58(50): 18212-18217, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31588650

RESUMO

Coordination networks that reversibly switch between closed and open phases are of topical interest since their stepped isotherms can offer higher working capacities for gas-storage applications than the related rigid porous coordination networks. To be of practical utility, the pressures at which switching occurs, the gate-opening and gate-closing pressures, must lie between the storage and delivery pressures. Here we study the effect of linker substitution to fine-tune gate-opening and gate-closing pressure. Specifically, three variants of a previously reported pcu-topology MOF, X-pcu-5-Zn, have been prepared: X-pcu-6-Zn, 6=1,2-bis(4-pyridyl)ethane (bpe), X-pcu-7-Zn, 7=1,2-bis(4-pyridyl)acetylene (bpa), and X-pcu-8-Zn, 8=4,4'-azopyridine (apy). Each exhibited switching isotherms but at different gate-opening pressures. The N2 , CO2 , C2 H2 , and C2 H4 adsorption isotherms consistently indicated that the most flexible dipyridyl organic linker, 6, afforded lower gate-opening and gate-closing pressures. This simple design principle enables a rational control of the switching behavior in adsorbent materials.

9.
J Am Chem Soc ; 140(46): 15572-15576, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30395458

RESUMO

We report a 2-fold interpenetrated primitive cubic (pcu) network X-pcu-5-Zn, [Zn2(DMTDC)2(dpe)] (H2DMTDC = 3,4-dimethylthieno[2,3- b]thiophene-2,5-dicarboxylic acid, dpe = 1,2-di(4-pyridyl)ethylene), that exhibits reversible switching between an as-synthesized "open" phase, X-pcu-5-Zn-α, and two nonporous or "closed" polymorphs, X-pcu-5-Zn-ß and X-pcu-5-Zn-γ. There are two unusual features of X-pcu-5-Zn. The first relates to its sorption properties, which reveal that the α form exhibits high CO2 uptake (ca. 255 cm3/g at 195 K) via reversible closed-to-open switching (type F-IV isotherm) of the type desirable for gas and vapor storage; there are only three other reports of porous materials that combine these two features. Second, we could only isolate the ß form by activation of the CO2 loaded α form and it persists through multiple CO2 adsorption/desorption cycles. We are unaware of a new polymorph having been isolated in such a manner. That the observed phase changes of X-pcu-5-Zn-α occur in single-crystal-to-single-crystal fashion enabled structural characterization of the three forms; γ is a coordination isomer of α and ß, both of which are based upon "paddlewheel" clusters.

11.
Angew Chem Int Ed Engl ; 57(20): 5684-5689, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29575465

RESUMO

Herein, we report that a new flexible coordination network, NiL2 (L=4-(4-pyridyl)-biphenyl-4-carboxylic acid), with diamondoid topology switches between non-porous (closed) and several porous (open) phases at specific CO2 and CH4 pressures. These phases are manifested by multi-step low-pressure isotherms for CO2 or a single-step high-pressure isotherm for CH4 . The potential methane working capacity of NiL2 approaches that of compressed natural gas but at much lower pressures. The guest-induced phase transitions of NiL2 were studied by single-crystal XRD, in situ variable pressure powder XRD, synchrotron powder XRD, pressure-gradient differential scanning calorimetry (P-DSC), and molecular modeling. The detailed structural information provides insight into the extreme flexibility of NiL2 . Specifically, the extended linker ligand, L, undergoes ligand contortion and interactions between interpenetrated networks or sorbate-sorbent interactions enable the observed switching.

18.
ChemSusChem ; 16(9): e202300069, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36745466

RESUMO

Adsorbed natural gas (ANG) systems involve using porous materials to increase the working capacity and/or reduce the storage pressure compared to compressed natural gas (CNG). Flexible metal-organic materials (FMOMs) are particularly interesting in this context since their stepped isotherms can afford increased working capacity if the adsorption/desorption steps occur within the proper pressure range. We report herein that metal doping in a family of isostructural FMOMs, ML2 (M=Co, Ni or Nix Co1-x , L=4-(4-pyridyl)-biphenyl-4-carboxylic acid), enables control over the gate opening between non-porous (closed) and porous (open) phases at pressures relevant to methane storage. Specifically, methane-induced phase transformations can be fine-tuned by using different Ni/Co ratios to enhance methane working capacity. The optimal working capacity from 5 to 35 bar at 298 K (153 cm3  cm-3 ) was found for Ni0.89 Co0.11 L2 (X-dia-1-Ni0.89 Co0.11 ), which is greater than that of benchmark rigid MOFs.

19.
J Mater Chem A Mater ; 11(30): 16019-16026, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38013758

RESUMO

Compared to rigid physisorbents, switching coordination networks that reversibly transform between closed (non-porous) and open (porous) phases offer promise for gas/vapour storage and separation owing to their improved working capacity and desirable thermal management properties. We recently introduced a coordination network, X-dmp-1-Co, which exhibits switching enabled by transient porosity. The resulting "open" phases are generated at threshold pressures even though they are conventionally non-porous. Herein, we report that X-dmp-1-Co is the parent member of a family of transiently porous coordination networks [X-dmp-1-M] (M = Co, Zn and Cd) and that each exhibits transient porosity but switching events occur at different threshold pressures for CO2 (0.8, 2.1 and 15 mbar, for Co, Zn and Cd, respectively, at 195 K), H2O (10, 70 and 75% RH, for Co, Zn and Cd, respectively, at 300 K) and CH4 (<2, 10 and 25 bar, for Co, Zn and Cd, respectively, at 298 K). Insight into the phase changes is provided through in situ SCXRD and in situ PXRD. We attribute the tuning of gate-opening pressure to differences and changes in the metal coordination spheres and how they impact dpt ligand rotation. X-dmp-1-Zn and X-dmp-1-Cd join a small number of coordination networks (<10) that exhibit reversible switching for CH4 between 5 and 35 bar, a key requirement for adsorbed natural gas storage.

20.
Nat Chem ; 15(4): 542-549, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36781909

RESUMO

Flexible metal-organic materials that exhibit stimulus-responsive switching between closed (non-porous) and open (porous) structures induced by gas molecules are of potential utility in gas storage and separation. Such behaviour is currently limited to a few dozen physisorbents that typically switch through a breathing mechanism requiring structural contortions. Here we show a clathrate (non-porous) coordination network that undergoes gas-induced switching between multiple non-porous phases through transient porosity, which involves the diffusion of guests between discrete voids through intra-network distortions. This material is synthesized as a clathrate phase with solvent-filled cavities; evacuation affords a single-crystal to single-crystal transformation to a phase with smaller cavities. At 298 K, carbon dioxide, acetylene, ethylene and ethane induce reversible switching between guest-free and gas-loaded clathrate phases. For carbon dioxide and acetylene at cryogenic temperatures, phases showing progressively higher loadings were observed and characterized using in situ X-ray diffraction, and the mechanism of diffusion was computationally elucidated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA