Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nature ; 544(7649): 231-234, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379940

RESUMO

The crown-of-thorns starfish (COTS, the Acanthaster planci species group) is a highly fecund predator of reef-building corals throughout the Indo-Pacific region. COTS population outbreaks cause substantial loss of coral cover, diminishing the integrity and resilience of reef ecosystems. Here we sequenced genomes of COTS from the Great Barrier Reef, Australia and Okinawa, Japan to identify gene products that underlie species-specific communication and could potentially be used in biocontrol strategies. We focused on water-borne chemical plumes released from aggregating COTS, which make the normally sedentary starfish become highly active. Peptide sequences detected in these plumes by mass spectrometry are encoded in the COTS genome and expressed in external tissues. The exoproteome released by aggregating COTS consists largely of signalling factors and hydrolytic enzymes, and includes an expanded and rapidly evolving set of starfish-specific ependymin-related proteins. These secreted proteins may be detected by members of a large family of olfactory-receptor-like G-protein-coupled receptors that are expressed externally, sometimes in a sex-specific manner. This study provides insights into COTS-specific communication that may guide the generation of peptide mimetics for use on reefs with COTS outbreaks.


Assuntos
Recifes de Corais , Genoma/genética , Controle Biológico de Vetores , Estrelas-do-Mar/genética , Animais , Antozoários/parasitologia , Austrália , Biomimética , Feminino , Oceano Índico , Japão , Masculino , Espectrometria de Massas , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Oceano Pacífico , Proteoma/análise , Proteoma/metabolismo , Fatores Sexuais , Especificidade da Espécie , Estrelas-do-Mar/anatomia & histologia , Estrelas-do-Mar/química , Estrelas-do-Mar/enzimologia , Transcriptoma
2.
Zoolog Sci ; 40(6): 444-454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064371

RESUMO

Coral-dinoflagellate symbiosis is a unique biological phenomenon, in which animal cells engulf single-celled photosynthetic algae and maintain them in their cytoplasm mutualistically. Studies are needed to reveal the complex mechanisms involved in symbiotic processes, but it is difficult to answer these questions using intact corals. To tackle these issues, our previous studies established an in vitro system of symbiosis between cells of the scleractinian coral Acropora tenuis and the dinoflagellate Breviolum minutum, and showed that corals direct phagocytosis, while algae are likely engulfed by coral cells passively. Several genera of the family Symbiodiniaceae can establish symbioses with corals, but the symbiotic ratio differs depending on the dinoflagellate clades involved. To understand possible causes of these differences, this study examined whether cultured coral cells show phagocytotic activity with various dinoflagellate strains similar to those shown by intact A. tenuis. We found that (a) A. tenuis larvae incorporate Symbiodinium and Breviolum, but not Cladocopium, and very few Effrenium, (b) cultured coral cells engulfed all four species but the ratio of engulfment was significantly higher with Symbiodinium and Breviolum than Cladocopium and Effrenium, (c) cultured coral cells also phagocytosed inorganic latex beads differently than they do dinoflagellates . It is likely that cultured coral cells preferentially phagocytose Symbiodinium and Breviolum, suggesting that specific molecular mechanisms involved in initiation of symbiosis should be investigated in the future.


Assuntos
Antozoários , Dinoflagellida , Animais , Fagocitose , Simbiose , Larva
3.
Photosynth Res ; 151(1): 113-124, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34309771

RESUMO

Photosynthesis in cyanobacteria, green algae, and basal land plants is protected against excess reducing pressure on the photosynthetic chain by flavodiiron proteins (FLV) that dissipate photosynthetic electrons by reducing O2. In these organisms, the genes encoding FLV are always conserved in the form of a pair of two-type isozymes (FLVA and FLVB) that are believed to function in O2 photo-reduction as a heterodimer. While coral symbionts (dinoflagellates of the family Symbiodiniaceae) are the only algae to harbor FLV in photosynthetic red plastid lineage, only one gene is found in transcriptomes and its role and activity remain unknown. Here, we characterized the FLV genes in Symbiodiniaceae and found that its coding region is composed of tandemly repeated FLV sequences. By measuring the O2-dependent electron flow and P700 oxidation, we suggest that this atypical FLV is active in vivo. Based on the amino-acid sequence alignment and the phylogenetic analysis, we conclude that in coral symbionts, the gene pair for FLVA and FLVB have been fused to construct one coding region for a hybrid enzyme, which presumably occurred when or after both genes were inherited from basal green algae to the dinoflagellate. Immunodetection suggested the FLV polypeptide to be cleaved by a post-translational mechanism, adding it to the rare cases of polycistronic genes in eukaryotes. Our results demonstrate that FLV are active in coral symbionts with genomic arrangement that is unique to these species. The implication of these unique features on their symbiotic living environment is discussed.


Assuntos
Antozoários , Cianobactérias , Dinoflagellida , Animais , Antozoários/genética , Dinoflagellida/genética , Fotossíntese/genética , Filogenia
4.
J Phycol ; 58(1): 1-11, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34699617

RESUMO

Global warming increases the temperature of the ocean surface, which can disrupt dinoflagellate-coral symbioses and result in coral bleaching. Photosynthetic dinoflagellates of the family Symbiodiniaceae include bleaching-tolerant and bleaching-sensitive coral symbionts. Therefore, understanding the molecular mechanisms for changing symbiont diversity is potentially useful to assist recovery of coral holobionts (corals and their associated microbes, including multiple species of Symbiodiniaceae), although sexual reproduction has not been observed in the Symbiodiniaceae. Recent molecular phylogenetic analyses estimate that the Symbiodiniaceae appeared 160 million years ago and diversified into 15 groups, five genera of which now have available draft genomes (i.e., Symbiodinium, Durusdinium, Breviolum, Fugacium, and Cladocopium). Comparative genomic analyses have suggested that crown groups have fewer gene families than early-diverging groups, although many genes that were probably acquired via gene duplications and horizontal gene transfers (HGTs) have been found in each decoded genome. Because UV stress is likely a contributor to coral bleaching, and because the highly conserved gene cluster for mycosporine-like amino acid (MAA) biosynthesis has been found in thermal-tolerant symbiont genomes, I reviewed genomic features of the Symbiodiniaceae, focusing on possible acquisition of a biosynthetic gene cluster for MAAs, which absorb UV radiation. On the basis of highly conserved noncoding sequences, I hypothesized that HGTs have occurred among members of the Symbiodiniaceae and have contributed to the diversification of Symbiodiniaceae-host relationships. Finally, I proposed that bleaching tolerance may be strengthened by multiple MAAs from both symbiotic dinoflagellates and corals.


Assuntos
Aminoácidos , Antozoários , Dinoflagellida , Aminoácidos/biossíntese , Animais , Antozoários/genética , Recifes de Corais , Dinoflagellida/genética , Transferência Genética Horizontal , Família Multigênica , Filogenia , Simbiose
5.
Nature ; 527(7579): 459-65, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26580012

RESUMO

Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.


Assuntos
Cordados não Vertebrados/genética , Evolução Molecular , Genoma/genética , Animais , Cordados não Vertebrados/classificação , Sequência Conservada/genética , Equinodermos/classificação , Equinodermos/genética , Família Multigênica/genética , Filogenia , Transdução de Sinais , Sintenia/genética , Fator de Crescimento Transformador beta
6.
BMC Biol ; 18(1): 139, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33050904

RESUMO

BACKGROUND: Some dinoflagellates cause harmful algal blooms, releasing toxic secondary metabolites, to the detriment of marine ecosystems and human health. Our understanding of dinoflagellate toxin biosynthesis has been hampered by their unusually large genomes. To overcome this challenge, for the first time, we sequenced the genome, microRNAs, and mRNA isoforms of a basal dinoflagellate, Amphidinium gibbosum, and employed an integrated omics approach to understand its secondary metabolite biosynthesis. RESULTS: We assembled the ~ 6.4-Gb A. gibbosum genome, and by probing decoded dinoflagellate genomes and transcriptomes, we identified the non-ribosomal peptide synthetase adenylation domain as essential for generation of specialized metabolites. Upon starving the cells of phosphate and nitrogen, we observed pronounced shifts in metabolite biosynthesis, suggestive of post-transcriptional regulation by microRNAs. Using Iso-Seq and RNA-seq data, we found that alternative splicing and polycistronic expression generate different transcripts for secondary metabolism. CONCLUSIONS: Our genomic findings suggest intricate integration of various metabolic enzymes that function iteratively to synthesize metabolites, providing mechanistic insights into how dinoflagellates synthesize secondary metabolites, depending upon nutrient availability. This study provides insights into toxin production associated with dinoflagellate blooms. The genome of this basal dinoflagellate provides important clues about dinoflagellate evolution and overcomes the large genome size, which has been a challenge previously.


Assuntos
Dinoflagellida/metabolismo , Genoma de Protozoário , MicroRNAs/análise , Isoformas de RNA/análise , RNA de Protozoário/análise , Metabolismo Secundário , Dinoflagellida/genética , RNA de Algas/análise
7.
BMC Genomics ; 21(1): 422, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32586267

RESUMO

BACKGROUND: The brown alga, Cladosiphon okamuranus (Okinawa mozuku), is one of the most important edible seaweeds, and it is cultivated for market primarily in Okinawa, Japan. Four strains, denominated S, K, O, and C, with distinctively different morphologies, have been cultivated commercially since the early 2000s. We previously reported a draft genome of the S-strain. To facilitate studies of seaweed biology for future aquaculture, we here decoded and analyzed genomes of the other three strains (K, O, and C). RESULTS: Here we improved the genome of the S-strain (ver. 2, 130 Mbp, 12,999 genes), and decoded the K-strain (135 Mbp, 12,511 genes), the O-strain (140 Mbp, 12,548 genes), and the C-strain (143 Mbp, 12,182 genes). Molecular phylogenies, using mitochondrial and nuclear genes, showed that the S-strain diverged first, followed by the K-strain, and most recently the C- and O-strains. Comparisons of genome architecture among the four strains document the frequent occurrence of inversions. In addition to gene acquisitions and losses, the S-, K-, O-, and C-strains possess 457, 344, 367, and 262 gene families unique to each strain, respectively. Comprehensive Blast searches showed that most genes have no sequence similarity to any entries in the non-redundant protein sequence database, although GO annotation suggested that they likely function in relation to molecular and biological processes and cellular components. CONCLUSIONS: Our study compares the genomes of four strains of C. okamuranus and examines their phylogenetic relationships. Due to global environmental changes, including temperature increases, acidification, and pollution, brown algal aquaculture is facing critical challenges. Genomic and phylogenetic information reported by the present research provides useful tools for isolation of novel strains.


Assuntos
Genômica/métodos , Phaeophyceae/classificação , Alga Marinha/genética , Aquicultura , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Mitocondriais/genética , Phaeophyceae/genética , Filogenia , Alga Marinha/classificação
8.
Dev Growth Differ ; 61(9): 475-484, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31709526

RESUMO

The green alga, Caulerpa lentillifera, is composed of a single cell with multiple nuclei, but it possesses structures analogous to leaves or fronds, stems or stolons, and roots or rhizoids. To understand molecular mechanisms involved in formation and function of these structures, we carried out RNA-seq analysis of fronds and stolons (including rhizoids). Taking advantage of the decoded genome of C. lentillifera, the present RNA-seq analysis addressed transcripts corresponding to 9,311 genes identified in the genome. RNA-seq data suggested that 8,734 genes are expressed in sporophytes. Despite the siphonous body of the alga, differential gene expression was evident in the two structures. 1,027 (11.8%) and 1,129 (12.9%) genes were preferentially expressed in fronds and stolons, respectively, while the remaining 6,578 (75.3%) genes were expressed at the same level in both. Most genes preferentially expressed in fronds are associated with photosynthesis and plant hormone pathways, including abscisic acid signaling. In contrast, those preferentially expressed in stolons are associated with translation and DNA replication. These results indicate that gene expression is regulated differently between fronds and stolons, which probably governs the function of each structure. Together with genomic information, the present transcriptomic data provide genic information about development and physiology of this unique, siphonous organism.


Assuntos
Caulerpa/genética , Regulação da Expressão Gênica de Plantas/genética , Estruturas Vegetais/genética , Caulerpa/crescimento & desenvolvimento
9.
BMC Genomics ; 19(1): 458, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898658

RESUMO

BACKGROUND: The marine dinoflagellate, Symbiodinium, is a well-known photosynthetic partner for coral and other diverse, non-photosynthetic hosts in subtropical and tropical shallows, where it comprises an essential component of marine ecosystems. Using molecular phylogenetics, the genus Symbiodinium has been classified into nine major clades, A-I, and one of the reported differences among phenotypes is their capacity to synthesize mycosporine-like amino acids (MAAs), which absorb UV radiation. However, the genetic basis for this difference in synthetic capacity is unknown. To understand genetics underlying Symbiodinium diversity, we report two draft genomes, one from clade A, presumed to have been the earliest branching clade, and the other from clade C, in the terminal branch. RESULTS: The nuclear genome of Symbiodinium clade A (SymA) has more gene families than that of clade C, with larger numbers of organelle-related genes, including mitochondrial transcription terminal factor (mTERF) and Rubisco. While clade C (SymC) has fewer gene families, it displays specific expansions of repeat domain-containing genes, such as leucine-rich repeats (LRRs) and retrovirus-related dUTPases. Interestingly, the SymA genome encodes a gene cluster for MAA biosynthesis, potentially transferred from an endosymbiotic red alga (probably of bacterial origin), while SymC has completely lost these genes. CONCLUSIONS: Our analysis demonstrates that SymC appears to have evolved by losing gene families, such as the MAA biosynthesis gene cluster. In contrast to the conservation of genes related to photosynthetic ability, the terminal clade has suffered more gene family losses than other clades, suggesting a possible adaptation to symbiosis. Overall, this study implies that Symbiodinium ecology drives acquisition and loss of gene families.


Assuntos
Dinoflagellida/genética , Evolução Molecular , Genoma , Aminoácidos/biossíntese , Cicloexanóis/metabolismo , Dinoflagellida/classificação , Deleção de Genes , Genes , Família Multigênica , Filogenia , Sequências Repetitivas de Aminoácidos , Simbiose/genética
10.
BMC Genomics ; 19(1): 733, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290758

RESUMO

BACKGROUND: The striped catfish, Pangasianodon hypophthalmus, is a freshwater and benthopelagic fish common in the Mekong River delta. Catfish constitute a valuable source of dietary protein. Therefore, they are cultured worldwide, and P. hypophthalmus is a food staple in the Mekong area. However, genetic information about the culture stock, is unavailable for breeding improvement, although genetics of the channel catfish, Ictalurus punctatus, has been reported. To acquire genome sequence data as a useful resource for marker-assisted breeding, we decoded a draft genome of P. hypophthalmus and performed comparative analyses. RESULTS: Using the Illumina platform, we obtained both nuclear and mitochondrial DNA sequences. Molecular phylogeny using the mitochondrial genome confirmed that P. hypophthalmus is a member of the family Pangasiidae and is nested within a clade including the families Cranoglanididae and Ictaluridae. The nuclear genome was estimated at approximately 700 Mb, assembled into 568 scaffolds with an N50 of 14.29 Mbp, and was estimated to contain ~ 28,600 protein-coding genes, comparable to those of channel catfish and zebrafish. Interestingly, zebrafish produce gadusol, but genes for biosynthesis of this sunscreen compound have been lost from catfish genomes. The differences in gene contents between these two catfishes were found in genes for vitamin D-binding protein and cytosolic phospholipase A2, which have lost only in channel catfish. The Hox cluster in catfish genomes comprised seven paralogous groups, similar to that of zebrafish, and comparative analysis clarified catfish lineage-specific losses of A5a, B10a, and A11a. Genes for insulin-like growth factor (IGF) signaling were conserved between the two catfish genomes. In addition to identification of MHC class I and sex determination-related gene loci, the hypothetical chromosomes by comparison with the channel catfish demonstrated the usefulness of the striped catfish genome as a marker resource. CONCLUSIONS: We developed genomic resources for the striped catfish. Possible conservation of genes for development and marker candidates were confirmed by comparing the assembled genome to that of a model fish, Danio rerio, and to channel catfish. Since the catfish genomic constituent resembles that of zebrafish, it is likely that zebrafish data for gene functions is applicable to striped catfish as well.


Assuntos
Aquicultura , Peixes-Gato/crescimento & desenvolvimento , Peixes-Gato/genética , Genômica , Animais , Anotação de Sequência Molecular , Processos de Determinação Sexual/genética
11.
Nature ; 476(7360): 320-3, 2011 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-21785439

RESUMO

Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.


Assuntos
Antozoários/genética , Antozoários/fisiologia , Mudança Climática , Genoma/genética , Animais , Antozoários/química , Antozoários/imunologia , Recifes de Corais , Cicloexilaminas , Cistationina beta-Sintase/genética , Cisteína/biossíntese , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Fósseis , Glicina/análogos & derivados , Glicina/biossíntese , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/imunologia , Simbiose/genética , Raios Ultravioleta
12.
BMC Genomics ; 16: 941, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26573520

RESUMO

BACKGROUND: Dinoflagellates are unicellular marine and freshwater eukaryotes. They possess large nuclear genomes (1.5-245 gigabases) and produce structurally unique and biologically active polyketide secondary metabolites. Although polyketide biosynthesis is well studied in terrestrial and freshwater organisms, only recently have dinoflagellate polyketides been investigated. Transcriptomic analyses have characterized dinoflagellate polyketide synthase genes having single domains. The Genus Symbiodinium, with a comparatively small genome, is a group of major coral symbionts, and the S. minutum nuclear genome has been decoded. RESULTS: The present survey investigated the assembled S. minutum genome and identified 25 candidate polyketide synthase (PKS) genes that encode proteins with mono- and multifunctional domains. Predicted proteins retain functionally important amino acids in the catalytic ketosynthase (KS) domain. Molecular phylogenetic analyses of KS domains form a clade in which S. minutum domains cluster within the protist Type I PKS clade with those of other dinoflagellates and other eukaryotes. Single-domain PKS genes are likely expanded in dinoflagellate lineage. Two PKS genes of bacterial origin are found in the S. minutum genome. Interestingly, the largest enzyme is likely expressed as a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly of 10,601 amino acids, containing NRPS and PKS modules and a thioesterase (TE) domain. We also found intron-rich genes with the minimal set of catalytic domains needed to produce polyketides. Ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP) along with other optional domains are present. Mapping of transcripts to the genome with the dinoflagellate-specific spliced leader sequence, supports expression of multifunctional PKS genes. Metabolite profiling of cultured S. minutum confirmed production of zooxanthellamide D, a polyhydroxy amide polyketide and other unknown polyketide secondary metabolites. CONCLUSION: This genomic survey demonstrates that S. minutum contains genes with the minimal set of catalytic domains needed to produce polyketides and provides evidence of the modular nature of Type I PKS, unlike monofunctional Type I PKS from other dinoflagellates. In addition, our study suggests that diversification of dinoflagellate PKS genes comprises dinoflagellate-specific PKS genes with single domains, multifunctional PKS genes with KS domains orthologous to those of other protists, and PKS genes of bacterial origin.


Assuntos
Dinoflagellida/genética , Policetídeo Sintases/genética , Dinoflagellida/enzimologia , Genoma , Policetídeo Sintases/classificação , Policetídeos/metabolismo , Estrutura Terciária de Proteína
13.
Genesis ; 52(12): 952-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25394327

RESUMO

The organization of echinoderm Hox clusters is of interest due to the role that Hox genes play in deuterostome development and body plan organization, and the unique gene order of the Hox complex in the sea urchin Strongylocentrotus purpuratus, which has been linked to the unique development of the axial region. Here, it has been reported that the Hox and ParaHox clusters of Acanthaster planci, a corallivorous starfish found in the Pacific and Indian oceans, generally resembles the chordate and hemichordate clusters. The A. planci Hox cluster shared with sea urchins the loss of one of the medial Hox genes, even-skipped (Evx) at the anterior of the cluster, as well as organization of the posterior Hox genes.


Assuntos
Genes Homeobox , Ouriços-do-Mar/genética , Estrelas-do-Mar/genética , Animais , Evolução Molecular , Deleção de Genes , Família Multigênica , Filogenia , Ouriços-do-Mar/classificação , Estrelas-do-Mar/classificação
14.
Mol Biol Evol ; 30(1): 167-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22936719

RESUMO

Innate immunity in corals is of special interest not only in the context of self-defense but also in relation to the establishment and collapse of their obligate symbiosis with dinoflagellates of the genus Symbiodinium. In innate immunity system of vertebrates, approximately 20 tripartite nucleotide oligomerization domain (NOD)-like receptor proteins that are defined by the presence of a NAIP, CIIA, HET-E and TP1 (NACHT) domain, a C-terminal leucine-rich repeat (LRR) domain, and one of three types of N-terminal effector domain, are known to function as the primary intracellular pattern recognition molecules. Surveying the coral genome revealed not only a larger number of NACHT- and related domain nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)-encoding loci (~500) than in other metazoans but also surprising diversity of domain combinations among the coral NACHT/NB-ARC-containing proteins; N-terminal effector domains included the apoptosis-related domains caspase recruitment domain (CARD), death effector domain (DED), and Death, and C-terminal repeat domains included LRRs, tetratricopeptide repeats, ankyrin repeats, and WD40 repeats. Many of the predicted coral proteins that contain a NACHT/NB-ARC domain also contain a glycosyl transferase group 1 domain, a novel domain combination first found in metazoans. Phylogenetic analyses suggest that the NACHT/NB-ARC domain inventories of various metazoan lineages, including corals, are largely products of lineage-specific expansions. Many of the NACHT/NB-ARC loci are organized in pairs or triplets in the Acropora genome, suggesting that the large coral NACHT/NB-ARC repertoire has been generated at least in part by tandem duplication. In addition, shuffling of N-terminal effector domains may have occurred after expansions of specific NACHT/NB-ARC-repeat domain types. These results illustrate the extraordinary complexity of the innate immune repertoire of corals, which may in part reflect adaptive evolution to a symbiotic lifestyle in a uniquely complex and challenging environment.


Assuntos
Antozoários/genética , Proteínas Adaptadoras de Sinalização NOD/genética , Domínios e Motivos de Interação entre Proteínas , Animais , Antozoários/imunologia , Evolução Molecular , Duplicação Gênica , Loci Gênicos , Variação Genética , Genoma , Imunidade Inata/genética , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Filogenia , Análise de Sequência de DNA
15.
Nature ; 453(7198): 1064-71, 2008 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-18563158

RESUMO

Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.


Assuntos
Cordados/genética , Evolução Molecular , Genoma/genética , Animais , Cordados/classificação , Sequência Conservada , Elementos de DNA Transponíveis/genética , Duplicação Gênica , Genes/genética , Ligação Genética , Humanos , Íntrons/genética , Cariotipagem , Família Multigênica , Filogenia , Polimorfismo Genético/genética , Proteínas/genética , Sintenia , Fatores de Tempo , Vertebrados/classificação , Vertebrados/genética
16.
Environ Microbiol Rep ; 16(2): e13238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444256

RESUMO

Bacterial-algal interactions strongly influence marine ecosystems. Bacterial communities in cultured dinoflagellates of the family Symbiodiniaceae have been characterized by metagenomics. However, little is known about whole-genome analysis of marine bacteria associated with these dinoflagellates. We performed in silico analysis of four bacterial genomes from cultures of four dinoflagellates of the genera Symbiodinium, Breviolum, Cladocopium and Durusdinium. Comparative analysis showed that the former three contain the alphaproteobacterial family Parvibaculaceae and that the Durusdinium culture includes the family Sphingomonadaceae. There were no large genomic reductions in the alphaproteobacteria with genome sizes of 2.9-3.9 Mb, implying they are not obligate intracellular bacteria. Genomic annotations of three Parvibaculaceae detected the gene for diacetylchitobiose deacetylase (Dac), which may be involved in the degradation of dinoflagellate cell surfaces. They also had metabolic genes for dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen (N) cycle and cobalamin (vitamin B12 ) biosynthetic genes in the salvage pathway. Those three characters were not found in the Sphingomonadaceae genome. Predicted biosynthetic gene clusters for secondary metabolites indicated that the Parvibaculaceae likely produce the same secondary metabolites. Our study suggests that the Parvibaculaceae is a major resident of Symbiodiniaceae cultures with antibiotics.


Assuntos
Alphaproteobacteria , Dinoflagellida , Sphingomonadaceae , Ecossistema , Genoma Bacteriano , Antibacterianos , Vitamina B 12
17.
Genome Biol Evol ; 16(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39240721

RESUMO

Zoantharia is an order among the Hexacorallia (Anthozoa: Cnidaria), and includes at least 300 species. Previously reported genomes from scleractinian corals and actiniarian sea anemones have illuminated part of the hexacorallian diversification. However, little is known about zoantharian genomes and the early evolution of hexacorals. To explore genome evolution in this group of hexacorals, here, we report de novo genome assemblies of the zoantharians Palythoa mizigama (Pmiz) and Palythoa umbrosa (Pumb), both of which are members of the family Sphenopidae, and uniquely live in comparatively dark coral reef caves without symbiotic Symbiodiniaceae dinoflagellates. Draft genomes generated from ultra-low input PacBio sequencing totaled 373 and 319 Mbp for Pmiz and Pumb, respectively. Protein-coding genes were predicted in each genome, totaling 30,394 in Pmiz and 24,800 in Pumb, with each set having ∼93% BUSCO completeness. Comparative genomic analyses identified 3,036 conserved gene families, which were found in all analyzed hexacoral genomes. Some of the genes related to toxins, chitin degradation, and prostaglandin biosynthesis were expanded in these two Palythoa genomes and many of which aligned tandemly. Extensive gene family loss was not detected in the Palythoa lineage and five of ten putatively lost gene families likely had neuronal function, suggesting biased gene loss in Palythoa. In conclusion, our comparative analyses demonstrate evolutionary conservation of gene families in the Palythoa lineage from the common ancestor of hexacorals. Restricted loss of gene families may imply that lost neuronal functions were effective for environmental adaptation in these two Palythoa species.


Assuntos
Antozoários , Família Multigênica , Animais , Antozoários/genética , Genoma , Filogenia , Evolução Molecular , Neurônios/metabolismo
18.
Zoolog Sci ; 30(10): 797-800, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24125644

RESUMO

We constructed a web-based genome annotation platform, MarinegenomicsDB, to integrate genome data from various marine organisms including the pearl oyster Pinctada fucata and the coral Acropora digitifera. This newly developed viewer application provides open access to published data and a user-friendly environment for community-based manual gene annotation. Development on a flexible framework enables easy expansion of the website on demand. To date, more than 2000 genes have been annotated using this system. In the future, the website will be expanded to host a wider variety of data, more species, and different types of genome-wide analyses. The website is available at the following URL: http://marinegenomics.oist.jp.


Assuntos
Bases de Dados Factuais , Genoma , Anotação de Sequência Molecular/métodos , Pinctada/genética , Software , Animais
19.
Mar Drugs ; 11(2): 559-70, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23434798

RESUMO

Genome sequences of the reef-building coral, Acropora digitifera, have been decoded. Acropora inhabits an environment with intense ultraviolet exposure and hosts the photosynthetic endosymbiont, Symbiodinium. Acropora homologs of all four genes necessary for biosynthesis of the photoprotective cyanobacterial compound, shinorine, are present. Among metazoans, these genes are found only in anthozoans. To gain further evolutionary insights into biosynthesis of photoprotective compounds and associated coral proteins, we surveyed the Acropora genome for 18 clustered genes involved in cyanobacterial synthesis of the anti-UV compound, scytonemin, even though it had not previously been detected in corals. We identified candidates for only 6 of the 18 genes, including tyrP, scyA, and scyB. Therefore, it does not appear that Acropora digitifera can synthesize scytonemin independently. On the other hand, molecular phylogenetic analysis showed that one tyrosinase gene is an ortholog of vertebrate tyrosinase genes and that the coral homologs, scyA and scyB, are similar to bacterial metabolic genes, phosphonopyruvate (ppyr) decarboxylase and glutamate dehydrogenase (GDH), respectively. Further genomic searches for ppyr gene-related biosynthetic components indicate that the coral possesses a metabolic pathway similar to the bacterial 2-aminoethylphosphonate (AEP) biosynthetic pathway. The results suggest that de novo synthesis of carbon-phosphorus compounds is performed in corals.


Assuntos
Ácido Aminoetilfosfônico/metabolismo , Antozoários/genética , Indóis/metabolismo , Fenóis/metabolismo , Ácido Aminoetilfosfônico/química , Animais , Bases de Dados Factuais , Regulação da Expressão Gênica , Genoma , Indóis/química , Estrutura Molecular , Fenóis/química , Filogenia
20.
PeerJ ; 11: e15023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151292

RESUMO

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Assuntos
Recifes de Corais , Dinoflagellida , Variação Genética , Dinoflagellida/classificação , Dinoflagellida/genética , Filogenia , Consenso , Antozoários , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA