Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534827

RESUMO

MOTIVATION: The organization of the genome into domains plays a central role in gene expression and other cellular activities. Researchers identify genomic domains mainly through two views: 1D functional assays such as ChIP-seq, and chromatin conformation assays such as Hi-C. Fully understanding domains requires integrative modeling that combines these two views. However, the predominant form of integrative modeling uses segmentation and genome annotation (SAGA) along with the rigid assumption that loci in contact are more likely to share the same domain type, which is not necessarily true for epigenomic domain types and genome-wide chromatin interactions. RESULTS: Here, we present an integrative approach that annotates domains using both 1D functional genomic signals and Hi-C measurements of genome-wide 3D interactions without the use of a pairwise prior. We do so by using a graph embedding to learn structural features corresponding to each genomic region, then inputting learned structural features along with functional genomic signals to a SAGA algorithm. We show that our domain types recapitulate well-known subcompartments with an additional granularity that distinguishes a combination of the spatial and functional states of the genomic regions. In particular, we identified a division of the previously identified A2 subcompartment such that the divided domain types have significantly varying expression levels. AVAILABILITY AND IMPLEMENTATION: https://github.com/nedashokraneh/IChDA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Cromatina , Cromossomos , Cromatina/genética , Genoma , Genômica , Conformação Molecular
2.
Bioinformatics ; 38(11): 3029-3036, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35451453

RESUMO

MOTIVATION: Segmentation and genome annotation (SAGA) algorithms are widely used to understand genome activity and gene regulation. These methods take as input a set of sequencing-based assays of epigenomic activity, such as ChIP-seq measurements of histone modification and transcription factor binding. They output an annotation of the genome that assigns a chromatin state label to each genomic position. Existing SAGA methods have several limitations caused by the discrete annotation framework: such annotations cannot easily represent varying strengths of genomic elements, and they cannot easily represent combinatorial elements that simultaneously exhibit multiple types of activity. To remedy these limitations, we propose an annotation strategy that instead outputs a vector of chromatin state features at each position rather than a single discrete label. Continuous modeling is common in other fields, such as in topic modeling of text documents. We propose a method, epigenome-ssm-nonneg, that uses a non-negative state space model to efficiently annotate the genome with chromatin state features. We also propose several measures of the quality of a chromatin state feature annotation and we compare the performance of several alternative methods according to these quality measures. RESULTS: We show that chromatin state features from epigenome-ssm-nonneg are more useful for several downstream applications than both continuous and discrete alternatives, including their ability to identify expressed genes and enhancers. Therefore, we expect that these continuous chromatin state features will be valuable reference annotations to be used in visualization and downstream analysis. AVAILABILITY AND IMPLEMENTATION: Source code for epigenome-ssm is available at https://github.com/habibdanesh/epigenome-ssm and Zenodo (DOI: 10.5281/zenodo.6507585). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Cromatina , Epigenoma , Humanos , Epigenômica/métodos , Genômica/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA