Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26388, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439855

RESUMO

The Artemisia genus belongs to the Asteraceae family and is used in the treatment of many different diseases such as hepatitis and cancer. So far, around 500 species of Artemisia have been found in different regions of the world. Artemisinin is one of the medicinal compounds found in Artemisia species. Hence, this medical feature encourages researchers to pay attention to various species of this genus to discover more genetic and phytochemical information. In the present study, five species of Artemisia including A. fragrans, A. annua, A. biennis, A. scoparia, and A. absinthium were compared to each other in terms of the artemisinin content and other phytochemical components. Moreover, the relative expression profiles of eight genes related to the accumulation and synthesis of artemisinin [including 4FPSF, DBR2, HMGR1, HMGR2, WIRKY, ADS, DXS, and SQS] were determined in investigated species. The result of high-performance liquid chromatography (HPLC) analysis showed that the content of artemisinin in various species was in the order of A. fragrans > A. annua > A. biennis > A. scoparia > A. absinthium. Based on the gas chromatography-mass spectrometry (GC-MS) analysis, 34, 26, 26, 24, and 20 phytochemical compounds were identified for A. scoparia, A. biennis, A. fragrans, A. absinthum, and A. annua species, respectively. Moreover, camphor (38.86%), ß-thujone (68.42%), spathulenol (48.33%), ß-farnesene (48.16%), and camphor (29.04%) were identified as the considerable compounds A. fragrans, A. absinthium, A. scoparia, A. biennis, and A. annua species, respectively. Considering the relative expression of the targeted genes, A. scoparia revealed higher expression for the 4FPSF gene. The highest relative expression of the DBR2, WIRKY, and SQS genes was found in A. absinthium species. Moreover, A. annua showed the highest expression of the ADS and DXS genes than the other species. In conclusion, our findings revealed that various species of Artemisia have interesting breeding potential for further investigation of different aspects such as medicinal properties and molecular studies.

2.
Heliyon ; 10(18): e38131, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347424

RESUMO

Genotype-by-environment interaction (GEI) analysis play a key role in any breeding program involving the development of new varieties for cultivation across various environments or in a specific region. The additive main effects and multiplicative interaction (AMMI) method and the GGE biplot are the two main statistical tools that have emerged to analyze GEI in multi-environment trials (METs). The main goal of the present study was to identify the best-performing and stable barley genotypes for the warm regions of Iran. For this purpose, 18 new advanced barley genotypes were investigated in five warm locations in Iran during two cropping seasons (2021-2023). In all experiments, test genotypes were evaluated in a randomized complete block design (RCBD) with three replications. Based on results, grain yield was significantly dependent on environments (E), genotypes (G), and GEI. The GEI effect was further divided into three principal component axes (IPCAs). The AMMI method identified genotypes G3, G9, G10, and G14 as ideal genotypes due to their low IPCA scores and high performances. In the GGE biplot analysis, the initial two PCAs accounted for 49.36 % of the total variation of grain yield, including both G and GEI effects. Based on averaged two-year data, genotypes G3, G4, G10, and G14 showed particular adaptability in the Zabol and Moghan regions. Moreover, the ranking of test environments showed good discriminatory and representative abilities for the Zabol and Moghan regions, so these environments constituted a mega-environment in Iran's warm climate. The genotype ranking indicated G3, G10 and G14 genotypes as the superior genotypes with the highest grain yield and stability in different test environments. Moreover, these results were confirmed by the results obtained by WAASB and WAASBY biplots. In conclusion, genotypes G3, G10 and G14 can be suggested for commercial usage and cultivation in various regions in Iran's warm climate.

3.
Plants (Basel) ; 11(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35567205

RESUMO

Knowledge of the natural patterns of genetic variation and their evolutionary basis is required for sustainable management and conservation of wheat germplasm. In the current study, the genetic diversity and population structure of 100 individuals from four Triticum and Aegilops species (including T. aestivum, Ae. tauschii, Ae. cylindrica, and Ae. crassa) were investigated using two gene-based markers (start codon targeted (SCoT) polymorphism and CAAT-box derived polymorphism (CBDP)) and simple-sequence repeats (SSRs). The SCoT, CBDP, and SSR markers yielded 76, 116, and 48 polymorphism fragments, respectively. The CBDP marker had greater efficiency than the SCoT and SSR markers due to its higher polymorphism content information (PIC), resolving power (Rp), and marker index (MI). Based on an analysis of molecular variance (AMOVA) performed using all marker systems and combined data, there was a higher distribution of genetic variation within species than among them. Ae. cylindrica and Ae. tauschii had the highest values for all genetic variation parameters. A cluster analysis using each marker system and combined data showed that the SSR marker had greater efficiency in grouping of tested accessions, such that the results of principal coordinate analysis (PCoA) and population structure confirmed the obtained clustering patterns. Hence, combining the SCoT and CBDP markers with polymorphic SSR markers may be useful in genetic fingerprinting and fine mapping and for association analysis in wheat and its germplasm for various agronomic traits or tolerance mechanisms to environmental stresses.

4.
Genes (Basel) ; 13(8)2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-36011403

RESUMO

In the present study, we estimated genetic diversity and population structure in 186 accessions of Triticum and Aegilops species using 24 simple sequence repeat markers (SSR). Furthermore, an association analysis was performed for antioxidant activities, including guaiacol peroxidase (GPX), ascorbate peroxidase (APX), peroxidase (POX), catalase (CAT), and dry matter (DM) under two control and drought stress conditions. Our findings showed that drought treatment significantly decreased DM, whereas activities of all antioxidant enzymes were increased compared to the control conditions. The results of correlation analysis indicated that, under drought stress conditions, all biochemical traits had a positive and significant association with each other and with dry matter. In the molecular section, the results of the analysis of molecular variance (AMOVA) indicated that the molecular variation within species is more than within them. The dendrogram obtained by cluster analysis showed that grouping the investigated accessions was in accordance with their genomic constitutions. The results of association analysis revealed 8 and 9 significant marker-trait associations (MTA) under control and drought stress conditions, respectively. Among identified MTAs, two associations were simultaneously found in both growing conditions. Moreover, several SSR markers were associated with multiple traits across both conditions. In conclusion, our results could provide worthwhile information regarding marker-assisted selection for the activity of antioxidant enzymes in future breeding programs.


Assuntos
Secas , Triticum , Antioxidantes , Fenótipo , Melhoramento Vegetal , Triticum/genética
5.
J Genet Eng Biotechnol ; 19(1): 56, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33852105

RESUMO

BACKGROUND: Evaluation of genetic diversity and relationships among crop wild relatives is an important task in crop improvement. The main objective of the current study was to estimate molecular variability within the set of 91 samples from Triticum aestivum, Aegilops cylindrica, and Aegilops crassa species using 30 CAAT box-derived polymorphism (CBDP) and start codon targeted (SCoT) markers. RESULTS: Fifteen SCoT and Fifteen CBDP primers produced 262 and 298 fragments which all of them were polymorphic, respectively. The number of polymorphic bands (NPB), polymorphic information content (PIC), resolving power (Rp), and marker index (MI) for SCoT primers ranged from 14 to 23, 0.31 to 0.39, 2.55 to 7.49, and 7.56 to 14.46 with an average of 17.47, 0.34, 10.44, and 5.69, respectively, whereas these values for CBDP primers were 15 to 26, 0.28 to 0.36, 3.82 to 6.94, and 4.74 to 7.96 with a mean of 19.87, 0.31, 5.35, and 6.24, respectively. Based on both marker systems, analysis of molecular variance (AMOVA) indicated that the portion of genetic diversity within species was more than among them. In both analyses, the highest values of the number of observed (Na) and effective alleles (Ne), Nei's gene diversity (He), and Shannon's information index (I) were estimated for Ae. cylindrica species. CONCLUSION: The results of cluster analysis and population structure showed that SCoT and CBDP markers grouped all samples based on their genomic constitutions. In conclusion, the used markers are very effective techniques for the evaluation of the genetic diversity in wild relatives of wheat.

6.
BioTech (Basel) ; 10(3)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35822768

RESUMO

Targeted nucleases are powerful genomic tools to precisely change the target genome of living cells, controlling functional genes with high exactness. The clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) genome editing system has been identified as one of the most useful biological tools in genetic engineering that is taken from adaptive immune strategies for bacteria. In recent years, this system has made significant progress and it has been widely used in genome editing to create gene knock-ins, knock-outs, and point mutations. This paper summarizes the application of this system in various biological sciences, including medicine, plant science, and animal breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA