Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mutagenesis ; 36(5): 380-387, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34459491

RESUMO

The main bactericidal components of cold atmospheric plasma (CAP) are thought to be reactive oxygen and nitrogen species (RONS) and UV-radiation, both of which have the capacity to cause DNA damage and mutations. Here, the mutagenic effects of CAP on Escherichia coli were assessed in comparison to X- and UV-irradiation. DNA damage and mutagenesis were screened for using a diffusion-based DNA fragmentation assay and modified Ames test, respectively. Mutant colonies obtained from the latter were quantitated and sequenced. CAP was found to elicit a similar mutation spectrum to X-irradiation, which did not resemble that for UV implying that CAP-produced RONS are more likely the mutagenic component of CAP. CAP treatment was also shown to promote resistance to the antibiotic ciprofloxacin. Our data suggest that CAP treatment has mutagenic effects that may have important phenotypic consequences.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Gases em Plasma/farmacologia , Dano ao DNA/efeitos dos fármacos , Fragmentação do DNA , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Mutagênese/efeitos dos fármacos , Raios Ultravioleta , Raios X
2.
Phys Chem Chem Phys ; 21(35): 19327-19341, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453592

RESUMO

The mechanisms of plasma in medicine are broadly attributed to plasma-derived reactive oxygen and nitrogen species (RONS). In order to exert any intracellular effects, these plasma-derived RONS must first traverse a major barrier in the cell membrane. The cell membrane lipid composition, and thereby the magnitude of this barrier, is highly variable between cells depending on type and state (e.g. it is widely accepted that healthy and cancerous cells have different membrane lipid compositions). In this study, we investigate how plasma-derived RONS interactions with lipid membrane components can potentially be exploited in the future for treatment of diseases. We couple phospholipid vesicle experiments, used as simple cell models, with molecular dynamics (MD) simulations of the lipid membrane to provide new insights into how the interplay between phospholipids and cholesterol may influence the response of healthy and diseased cell membranes to plasma-derived RONS. We focus on the (i) lipid tail saturation degree, (ii) lipid head group type, and (iii) membrane cholesterol fraction. Using encapsulated molecular probes, we study the influence of the above membrane components on the ingress of RONS into the vesicles, and subsequent DNA damage. Our results indicate that all of the above membrane components can enhance or suppress RONS uptake, depending on their relative concentration within the membrane. Further, we show that higher RONS uptake into the vesicles does not always correlate with increased DNA damage, which is attributed to ROS reactivity and lifetime. The MD simulations indicate the multifactorial chemical and physical processes at play, including (i) lipid oxidation, (ii) lipid packing, and (iii) lipid rafts formation. The methods and findings presented here provide a platform of knowledge that could be leveraged in the development of therapies relying on the action of plasma, in which the cell membrane and oxidative stress response in cells is targeted.


Assuntos
Dano ao DNA , Lipídeos de Membrana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Colesterol/química , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Fosfolipídeos/química , Espécies Reativas de Nitrogênio/sangue , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/sangue , Vesículas Transportadoras/química
3.
Cytotherapy ; 20(2): 169-180, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29254764

RESUMO

This review aims to provide a broad introduction to the use of cell sheets and the role of materials in the delivery of cell sheets to patients within a clinical setting. Traditionally, cells sheets have been, and currently are, fabricated using established and accepted cell culture methods within standard formats (e.g., petri dishes) utilizing biological substrates. Synthetic surfaces provide a far more versatile system for culturing and delivering cell sheets. This has the potential to positively affect quality, and efficient, localized cell delivery has a significant impact on patient outcome and on the overall cost of goods. We highlight current applications of these advanced carriers and future applications of these surfaces and cell sheets with an emphasis both on clinical use and regulatory requirements.


Assuntos
Técnicas de Cultura de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Animais , Células Cultivadas , Humanos , Transplante de Células-Tronco
4.
Phys Chem Chem Phys ; 20(10): 7033-7042, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29473064

RESUMO

Historically, there have been two opposing views regarding deposition mechanisms in plasma polymerisation, radical growth and direct ion deposition, with neither being able to fully explain the chemistry of the resultant coating. Deposition rate and film chemistry are dependent on the chemistry of the plasma phase and thus the activation mechanisms of species in the plasma are critical to understanding the relative contributions of various chemical and physical routes to plasma polymer formation. In this study, we investigate the roles that hydrogen plays in activating and deactivating reactive plasma species. Ethyl trimethylacetate (ETMA) is used as a representative organic precursor, and additional hydrogen is added to the plasma in the form of water and deuterium oxide. Optical emission spectroscopy confirms that atomic hydrogen is abundant in the plasma. Comparison of the plasma phase mass spectra of ETMA/H2O and ETMA/D2O reveals that (1) proton transfer from hydronium is a common route to charging precursors in plasma, and (2) hydrogen abstraction (activation) and recombination (deactivation) processes are much more dynamic in the plasma than previously thought. Consideration of the roles of hydrogen in plasma chemistry may then provide a more comprehensive view of deposition processes and bridge the divide between the two disparate schools of thought.

5.
Phys Chem Chem Phys ; 19(7): 5637-5646, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28168250

RESUMO

Chemically functionalized surfaces may be produced via plasma polymerization, however a high degree of functional group retention is often difficult to achieve. Here, the plasma polymerization of three structurally related ester precursors, ethyl isobutyrate (EIB), methyl isobutyrate (MIB) and ethyl trimethylacetate (ETMA) is compared at low and high pressure. In moving from a low pressure to higher pressure regime, significant changes in the plasma chemistry and resulting plasma polymer deposit were observed with much higher retention of chemical functionality at the higher pressure observed. Until now these changes would have been attributed to a decrease in the energy/molecule, however we show by direct measurement of the chemistry and physics of the plasma that there is fundamental shift in the properties of the plasma and surface interactions which explain the results. At low pressure (α regime) precursor fragmentation and neutral deposition dominate resulting in poor functional group retention. Increasing the pressure such that the sheath region close to surfaces becomes collisional (γ regime) favours production of protonated precursor ions which retain functionality and dominate the deposition process rather than radical species.

6.
Langmuir ; 32(1): 301-8, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26654169

RESUMO

This paper reports on the fabrication of a pSi-based drug delivery system, functionalized with an initiated chemical vapor deposition (iCVD) polymer film, for the sustainable and temperature-dependent delivery of drugs. The devices were prepared by loading biodegradable porous silicon (pSi) with a fluorescent anticancer drug camptothecin (CPT) and coating the surface with temperature-responsive poly(N-isopropylacrylamide-co-diethylene glycol divinyl ether) (pNIPAM-co-DEGDVE) or non-stimulus-responsive poly(aminostyrene) (pAS) via iCVD. CPT released from the uncoated oxidized pSi control with a burst release fashion (∼21 nmol/(cm(2) h)), and this was almost identical at temperatures both above (37 °C) and below (25 °C) the lower critical solution temperature (LCST) of the switchable polymer used, pNIPAM-co-DEGDVE (28.5 °C). In comparison, the burst release rate from the pSi-pNIPAM-co-DEGDVE sample was substantially slower at 6.12 and 9.19 nmol/(cm(2) h) at 25 and 37 °C, respectively. The final amount of CPT released over 16 h was 10% higher at 37 °C compared to 25 °C for pSi coated with pNIPAM-co-DEGDVE (46.29% vs 35.67%), indicating that this material can be used to deliver drugs on-demand at elevated temperatures. pSi coated with pAS also displayed sustainable drug delivery profiles, but these were independent of the release temperature. These data show that sustainable and temperature-responsive delivery systems can be produced by functionalization of pSi with iCVD polymer films. Benefits of the iCVD approach include the application of the iCVD coating after drug loading without causing degradation of the drug commonly caused by exposure to factors such as solvents or high temperatures. Importantly, the iCVD process is applicable to a wide array of surfaces as the process is independent of the surface chemistry and pore size of the nanoporous matrix being coated.


Assuntos
Camptotecina/química , Polímeros/química , Silício/química , Sistemas de Liberação de Medicamentos , Porosidade
7.
J Mater Sci Mater Med ; 25(5): 1367-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24493476

RESUMO

Age related macular degeneration of the eye is brought about by damage to the retinal pigment epithelium (RPE) and is a major cause of adult blindness. One potential treatment method is transplantation of RPE cells grown in vitro. Maintaining RPE cell viability and physiological function in vitro is a challenge, and this must also be achieved using materials that can be subsequently used to deliver an intact cell sheet into the eye. In this paper, plasma polymerisation has been used to develop a chemically modified surface for maintaining RPE cells in vitro. Multiwell plates modified with a plasma copolymer of allylamine and octadiene maintained RPE cell growth at a level similar to that of TCPS. However, the addition of bound glycosaminoglycans (GAGs) to the plasma polymerised surface significantly enhanced RPE proliferation. Simply adding GAG to the culture media had no positive effect. It is shown that a combination of plasma polymer and GAG is a promising method for developing suitable surfaces for cell growth and delivery, that can be applied to any substrate material.


Assuntos
Materiais Biocompatíveis/síntese química , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacocinética , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/crescimento & desenvolvimento , Soro/metabolismo , Engenharia Tecidual/métodos , Adsorção , Linhagem Celular , Proliferação de Células/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Humanos , Teste de Materiais
8.
Adv Healthc Mater ; : e2401545, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924692

RESUMO

While blood-contacting materials are widely deployed in medicine in vascular stents, catheters, and cannulas, devices fail in situ because of thrombosis and restenosis. Furthermore, microbial attachment and biofilm formation is not an uncommon problem for medical devices. Even incremental improvements in hemocompatible materials can provide significant benefits for patients in terms of safety and patency as well as substantial cost savings. Herein, a novel but simple strategy is described for coating a range of medical materials, that can be applied to objects of complex geometry, involving plasma-grafting of an ultrathin hyperbranched polyglycerol coating (HPG). Plasma activation creates highly reactive surface oxygen moieties that readily react with glycidol. Irrespective of the substrate, coatings are uniform and pinhole free, comprising O─C─O repeats, with HPG chains packing in a fashion that holds reversibly binding proteins at the coating surface. In vitro assays with planar test samples show that HPG prevents platelet adhesion and activation, as well as reducing (>3 log) bacterial attachment and preventing biofilm formation. Ex vivo and preclinical studies show that HPG-coated nitinol stents do not elicit thrombosis or restenosis, nor complement or neutrophil activation. Subcutaneous implantation of HPG coated disks under the skin of mice shows no evidence of toxicity nor inflammation.

9.
Langmuir ; 29(8): 2595-601, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23373619

RESUMO

It has been shown that both ions and neutral species may contribute to plasma polymer growth. However, the relative contribution from these mechanisms remains unclear. We present data elucidating the importance of considering monomer structure with respect to which the growth mechanism dominates for nonfouling PEG-like plasma polymers. The deposition rate for saturated monomers is directly linked with ion flux to the substrate. For unsaturated monomers, the neutral flux also plays a role, particularly at low power. Increased fragmentation of the monomer at high power reduces the ability of unsaturated monomers to grow via neutral grafting. Chemical characterization by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirm the role that plasma phase fragmentation plays in determining the deposition rate and surface chemistry of the deposited film. The simple experimental method used here may also be used to determine which mechanisms dominate plasma deposition for other monomers. This knowledge may enable significant improvement in future reactor design and process control.


Assuntos
Polímeros/química , Estrutura Molecular , Polímeros/síntese química , Espectrometria de Massa de Íon Secundário , Espectrofotometria , Propriedades de Superfície , Fatores de Tempo , Raios X
10.
Biofilm ; 6: 100141, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37449091

RESUMO

Diagnosing biofilm infections has remained a constant challenge for the last 50 years. Existing diagnostic methods struggle to identify the biofilm phenotype. Moreover, most methods of biofilm analysis destroy the biofilm making the resultant data interpretation difficult. In this study we introduce Fourier Transform Infra-Red (FTIR) spectroscopy as a label-free, non-destructive approach to monitoring biofilm progression. We have utilised FTIR in a novel application to evaluate the chemical composition of bacterial biofilms without disrupting the biofilm architecture. S. epidermidis (RP62A) was grown onto calcium fluoride slides for periods of 30 min-96 h, before semi-drying samples for analysis. We report the discovery of a chemical marker to distinguish between planktonic and biofilm samples. The appearance of new proteins in biofilm samples of varying maturity is exemplified in the spectroscopic data, highlighting the potential of FTIR for identifying the presence and developmental stage of a single biofilm.

11.
Biofilm ; 5: 100123, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37138646

RESUMO

The global clinical and socioeconomic impact of chronic wounds is substantial. The main difficulty that clinicians face during the treatment of chronic wounds is the risk of infection at the wound site. Infected wounds arise from an accumulation of microbial aggregates in the wound bed, leading to the formation of polymicrobial biofilms that can be largely resistant to antibiotic therapy. Therefore, it is essential for studies to identify novel therapeutics to alleviate biofilm infections. One innovative technique is the use of cold atmospheric plasma (CAP) which has been shown to possess promising antimicrobial and immunomodulatory properties. Here, different clinically relevant biofilm models will be treated with cold atmospheric plasma to assess its efficacy and killing effects. Biofilm viability was assessed using live dead qPCR, and morphological changes associated with CAP evaluated using scanning electron microscopy (SEM). Results indicated that CAP was effective against Candida albicans and Pseudomonas aeruginosa, both as mono-species biofilms and when grown in a triadic model system. CAP also significantly reduced viability in the nosocomial pathogen, Candida auris. Staphylococcus aureus Newman exhibited a level of tolerance to CAP therapy, both when grown alone or in the triadic model when grown alongside C. albicans and P. aeruginosa. However, this degree of tolerance exhibited by S. aureus was strain dependent. At a microscopic level, biofilm treatment led to subtle changes in morphology in the susceptible biofilms, with evidence of cellular deflation and shrinkage. Taken together, these results indicate a promising application of direct CAP therapy in combatting wound and skin-related biofilm infections, although biofilm composition may affect the treatment efficacy.

12.
ACS Appl Mater Interfaces ; 15(16): 19989-19996, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040527

RESUMO

We present the concept of a versatile drug-loaded composite hydrogel that can be activated using an argon-based cold atmospheric plasma (CAP) jet to deliver both a drug and CAP-generated molecules, concomitantly, in a tissue target. To demonstrate this concept, we utilized the antibiotic gentamicin that is encapsulated in sodium polyacrylate (PAA) particles, which are dispersed within a poly(vinyl alcohol) (PVA) hydrogel matrix. The final product is a gentamicin-PAA-PVA composite hydrogel suitable for an on-demand triggered release using CAP. We show that by activating using CAP, we can effectively release gentamicin from the hydrogel and also eradicate the bacteria effectively, both in the planktonic state and within a biofilm. Besides gentamicin, we also successfully demonstrate the applicability of the CAP-activated composite hydrogel loaded with other antimicrobial agents such as cetrimide and silver. This concept of a composite hydrogel is potentially adaptable to a range of therapeutics (such as antimicrobials, anticancer agents, and nanoparticles) and activatable using any dielectric barrier discharge CAP device.


Assuntos
Hidrogéis , Gases em Plasma , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Álcool de Polivinil , Gentamicinas/farmacologia
13.
Langmuir ; 28(5): 2710-7, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22235975

RESUMO

Surface density gradients of streptavidin (SAV) were created on solid surfaces and demonstrated functionality as a bioconjugation platform. The surface density of immobilized streptavidin steadily increased in one dimension from 0 to 235 ng cm(-2) over a distance of 10 mm. The density of coupled protein was controlled by its immobilization onto a polymer surface bearing a gradient of aldehyde group density, onto which SAV was covalently linked using spontaneous imine bond formation between surface aldehyde functional groups and primary amine groups on the protein. As a control, human serum albumin was immobilized in the same manner. The gradient density of aldehyde groups was created using a method of simultaneous plasma copolymerization of ethanol and propionaldehyde. Control over the surface density of aldehyde groups was achieved by manipulating the flow rates of these vapors while moving a mask across substrates during plasma discharge. Immobilized SAV was able to bind biotinylated probes, indicating that the protein retained its functionality after being immobilized. This plasma polymerization technique conveniently allows virtually any substrate to be equipped with tunable protein gradients and provides a widely applicable method for bioconjugation to study effects arising from controllable surface densities of proteins.


Assuntos
Biotina/química , Polímeros/química , Estreptavidina/química , Biotinilação , Humanos , Albumina Sérica/química , Propriedades de Superfície
14.
NPJ Biofilms Microbiomes ; 8(1): 19, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393409

RESUMO

Wounds can commonly become infected with polymicrobial biofilms containing bacterial and fungal microorganisms. Microbial colonization of the wound can interfere with sufficient healing and repair, leading to high rates of chronicity in certain individuals, which can have a huge socioeconomic burden worldwide. One route for alleviating biofilm formation in chronic wounds is sufficient treatment of the infected area with topical wound washes and ointments. Thus, the primary aim here was to create a complex in vitro biofilm model containing a range of microorganisms commonly isolated from the infected wound milieu. These polymicrobial biofilms were treated with three conventional anti-biofilm wound washes, chlorhexidine (CHX), povidone-iodine (PVP-I), and hydrogen peroxide (H2O2), and efficacy against the microorganisms assessed using live/dead qPCR. All treatments reduced the viability of the biofilms, although H2O2 was found to be the most effective treatment modality. These biofilms were then co-cultured with 3D skin epidermis to assess the inflammatory profile within the tissue. A detailed transcriptional and proteomic profile of the epidermis was gathered following biofilm stimulation. At the transcriptional level, all treatments reduced the expression of inflammatory markers back to baseline (untreated tissue controls). Olink technology revealed a unique proteomic response in the tissue following stimulation with untreated and CHX-treated biofilms. This highlights treatment choice for clinicians could be dictated by how the tissue responds to such biofilm treatment, and not merely how effective the treatment is in killing the biofilm.


Assuntos
Peróxido de Hidrogênio , Infecção dos Ferimentos , Biofilmes , Clorexidina , Epiderme , Humanos , Peróxido de Hidrogênio/farmacologia , Proteômica , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
15.
Langmuir ; 27(19): 11943-50, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21863814

RESUMO

New data shed light on the mechanisms of film growth from low power, low pressure plasmas of organic compounds. These data rebalance the widely held view that plasma polymer formation is due to radical/neutral reactions only and that ions play no direct role in contributing mass at the surface. Ion reactions are shown to play an important role in both the plasma phase and at the surface. The mass deposition rate and ion flux in continuous wave hexamethyl disiloxane (HMDSO) plasmas have been studied as a function of pressure and applied RF power. Both the deposition rate and ion flux were shown to increase with applied power; however, the deposition rate increased with pressure while the ion flux decreased. Positive ion mass spectrometry of the plasma phase demonstrates that the dominant ionic species is the (HMDSO-CH(3))(+) ion at m/z 147, but significant fragmentation and subsequent oligomerization was also observed. Chemical analysis of the deposits by X-ray photoelectron spectroscopy and secondary ion mass spectrometry show that the deposits were consistent with deposits reported by previous workers grown from plasma and hyperthermal (HMDSO-CH(3))(+) ions. Increasing coordination of silicon with oxygen in the plasma deposits reveals the role of ions in the growth of plasma polymers. Comparing the calculated film thicknesses after a fixed total fluence of 1.5 × 10(19) ions/m(2) to results for hyperthermal ions shows that ions can contribute significantly to the total absorbed mass in the deposits.


Assuntos
Membranas Artificiais , Siloxanas/química , Íons/química , Espectrometria de Massas , Estrutura Molecular , Espectrometria de Massa de Íon Secundário , Espectrofotometria , Raios X
16.
Nanotechnology ; 22(41): 415601, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21914941

RESUMO

Nanoporous alumina (PA) arrays produced by self-ordering growth, using electrochemical anodization, have been extensively explored for potential applications based upon the unique thermal, mechanical and structural properties, and high surface-to-volume ratio of these materials. However, the potential applications and functionality of these materials may be further extended by molecular-level engineering of the surface of the pore rims. In this paper we present a method for the generation of chemical gradients on the surface of PA arrays based upon plasma co-polymerization of two monomers. We further extend these chemical gradients, which are also gradients of surface charge, to those of bound ligands and number density gradients of nanoparticles. The latter represent a highly exotic new class of materials, comprising aligned PA, capped by gold nanoparticles around the rim of the pores. Gradients of chemistry, ligands and nanoparticles generated by our method retain the porous structure of the substrate, which is important in applications that take advantage of the inherent properties of these materials. This method can be readily extended to other porous materials.

17.
Biochem Soc Trans ; 38(4): 1062-6, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20659004

RESUMO

In the future, stem-cell-based therapies could offer new approaches to treat kidney disease and reduce the incidence of ESRD (end-stage renal disease), but, as yet, research in this area is only being conducted in rodents and it is not clear whether or when it could be applied to human patients. Drug therapies, on the other hand, have been very effective at delaying the progression of kidney disease, but, for various reasons, current drug regimes are not suitable for all patients. A greater understanding of the molecular mechanisms that underlie disease progression in chronic kidney disease could help to identify novel drug targets. However, progress in this area is currently hindered due to the lack of appropriate in vitro culture systems for important renal cell types, such as proximal tubule cells and podocytes. This problem could be overcome if it were possible to direct the differentiation of kidney stem cells to renal cell types in vitro. In the present review, we highlight the potential of surface gradients of small chemical functional groups to direct the differentiation of kidney stem cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Rim/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Células-Tronco/efeitos dos fármacos , Animais , Humanos , Rim/citologia , Rim/fisiologia , Falência Renal Crônica/terapia , Modelos Biológicos , Bibliotecas de Moléculas Pequenas/química , Transplante de Células-Tronco , Células-Tronco/fisiologia , Relação Estrutura-Atividade
18.
Nanotechnology ; 21(21): 215102, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20431209

RESUMO

This paper presents a novel and facile method for the generation of efficient antibacterial coatings which can be applied to practically any type of substrate. Silver nanoparticles were stabilized with an adsorbed surface layer of polyvinyl sulphonate (PVS). This steric layer provided excellent colloidal stability, preventing aggregation over periods of months. PVS-coated silver nanoparticles were bound onto amine-containing surfaces, here produced by deposition of an allylamine plasma polymer thin film onto various substrates. SEM imaging showed no aggregation upon surface binding of the nanoparticles; they were well dispersed on amine surfaces. Such nanoparticle-coated surfaces were found to be effective in preventing attachment of Staphylococcus epidermidis bacteria and also in preventing biofilm formation. Combined with the ability of plasma polymerization to apply the thin polymeric binding layer onto a wide range of materials, this method appears promising for the fabrication of a wide range of infection-resistant biomedical devices.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Polivinil/química , Prata/química , Ácidos Sulfônicos/química , Adsorção , Aminas/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Polivinil/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Ácidos Sulfônicos/farmacologia , Propriedades de Superfície , Termodinâmica
19.
Biointerphases ; 15(6): 061007, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33218222

RESUMO

Plasma polymerization of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) yields thin films containing stable nitroxide radicals that have properties analogous to that of nitric oxide (NO) without short lifetimes. This property gives TEMPO films a wide variety of potential applications. Typically, control of the final film chemistry is difficult and the plasma discharge conditions must be tailored to in order to maximize the retention of these nitroxide groups during the polymerization and deposition process. In this study, plasma diagnostics and surface analysis of the deposited films were carried out to determine the optimal plasma conditions for the retention of nitroxide groups. These techniques included energy-resolved mass spectrometry, heated planar probe ion current measurements, deposition rate measurements, and x-ray photoelectron spectroscopy (XPS). Results show that operating the plasma with a combination of low input powers and high pressures produces a collisional discharge in which fragmentation of the TEMPO molecule is suppressed, leading to good retention of nitroxide groups. Ion energy distribution functions and quartz crystal microbalance measurements support the soft landing theory of ion deposition on the substrate within this γ-mode, in which the flux of low energy, soft landed ions form the primary contribution to film growth. XPS analysis of deposited polymers shows 75.7% retention of N-O groups in the polymer films deposited in a 25 Pa 5 W discharge.


Assuntos
Óxidos N-Cíclicos/química , Gases em Plasma/química , Polímeros/química , Espectrometria de Massas , Óxidos de Nitrogênio/química , Espectroscopia Fotoeletrônica , Polimerização , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
20.
Glycobiology ; 19(12): 1537-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19729381

RESUMO

The interactions of glycosaminoglycans (GAGs) with proteins underlie a wide range of important biological processes. However, the study of such binding reactions has been hampered by the lack of a simple frontline analysis technique. Previously, we have reported that cold plasma polymerization can be used to coat microtiter plate surfaces with allyl amine to which GAGs (e.g., heparin) can be noncovalently immobilized retaining their ability to interact with proteins. Here, we have assessed the capabilities of surface coats derived from different ratios of allyl amine and octadiene (100:0 to 0:100) to support the binding of diverse GAGs (e.g., chondroitin-4-sulfate, dermatan sulfate, heparin preparations, and hyaluronan) in a functionally active state. The Link module from TSG-6 was used as a probe to determine the level of functional binding because of its broad (and unique) specificity for both sulfated and nonsulfated GAGs. All of the GAGs tested could bind this domain following their immobilization, although there were clear differences in their protein-binding activities depending on the surface chemistry to which they were adsorbed. On the basis of these experiments, 100% allyl amine was chosen for the generation of a microtiter plate-based "sugar array"; X-ray photoelectron spectroscopy revealed that similar relative amounts of chondroitin-4-sulfate, dermatan sulfate, and heparin (including two selectively de-sulfated derivatives) were immobilized onto this surface. Analysis of four unrelated proteins (i.e., TSG-6, complement factor H, fibrillin-1, and versican) illustrated the utility of this array to determine the GAG-binding profile and specificity for a particular target protein.


Assuntos
Glicômica/instrumentação , Glicômica/métodos , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Lectinas/metabolismo , Análise em Microsséries , Alilamina/química , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Fator H do Complemento/química , Fator H do Complemento/metabolismo , Fibrilina-1 , Fibrilinas , Heparina/química , Heparina/metabolismo , Humanos , Lectinas/análise , Lectinas/isolamento & purificação , Análise em Microsséries/instrumentação , Análise em Microsséries/métodos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Microtecnologia/instrumentação , Microtecnologia/métodos , Ligação Proteica , Especificidade por Substrato , Propriedades de Superfície , Suínos , Versicanas/química , Versicanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA