RESUMO
Loss of function variants in the lysine demethylase 5C (KDM5C) gene account for approximately 0.7-2.8% of X-linked intellectual disability (ID) cases and pose significant burdens for patients and their caregivers. To date, 45 unique variants in KDM5C have been reported in individuals with ID. As a rare disorder, its etiology and natural history remain an area of active investigation, with treatment limited to symptom management. Previous studies have found that males present with moderate to severe ID with significant syndromic comorbidities such as epilepsy, short stature, and craniofacial abnormalities. Although not as well characterized, females have been reported to predominantly display mild to moderate ID with approximately half being asymptomatic. Here, we present caregiver-reported data for 37 unrelated individuals with pathogenic variants in KDM5C; the largest cohort reported to-date. We find that up to 70% of affected females were reported to display syndromic features including gastrointestinal dysfunction and hearing impairment. Additionally, more than half of individuals reported a diagnosis of autism spectrum disorder or described features consistent with this spectrum. Our data thus provide further evidence of sexually dimorphic heterogeneity in disease presentation and suggest that pathogenic variants in KDM5C may be more common than previously assumed.
Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Histona Desmetilases/genética , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Cuidadores , Criança , Pré-Escolar , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/epidemiologia , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/epidemiologia , Mutação/genética , Adulto JovemRESUMO
Assessing cognitive development is critical in clinical research of autism spectrum disorder (ASD). However, collecting cognitive data from clinically administered assessments can add a significant burden to clinical research in ASD due to the substantial cost and time required, and it is often prohibitive in large-scale studies. There is a need for more efficient, but reliable, methods to estimate cognitive functioning for researchers, clinicians, and families. To examine the degree to which caregiver estimates of cognitive level agree with actual measured intelligence/developmental scores and understand factors that may impact that agreement, 1,555 autistic individuals (81.74% male; age 18 months-18 years) were selected from a large cohort (Simons Foundation Powering Autism Research for Knowledge, SPARK). Results suggest that querying parents about recent testing results and developmental diagnoses can provide valid and useful information on cognitive ability. The agreement of parental estimates varied with age, measured cognitive ability, autistic traits, and adaptive skills. In the context of large-scale research efforts, parent-reported cognitive impairment may be a good proxy for categorical IQ range for survey-based studies when specific IQ scores are not available, circumventing the logistical and financial obstacles of obtaining neuropsychological or neurodevelopmental testing.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Masculino , Criança , Lactente , Feminino , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/psicologia , Pais , Inteligência , CogniçãoRESUMO
BACKGROUND: The COVID-19 pandemic forced healthcare institutions and many clinical research programs to adopt telehealth modalities in order to mitigate viral spread. With the expanded use of telehealth, there is the potential to increase access to genomic medicine to medically underserved populations, yet little is known about how best to communicate genomic results via telehealth while also ensuring equitable access. NYCKidSeq, a multi-institutional clinical genomics research program in New York City, launched the TeleKidSeq pilot study to assess alternative forms of genomic communication and telehealth service delivery models with families from medically underserved populations. METHODS: We aim to enroll 496 participants between 0 and 21 years old to receive clinical genome sequencing. These individuals have a neurologic, cardiovascular, and/or immunologic disease. Participants will be English- or Spanish-speaking and predominantly from underrepresented groups who receive care in the New York metropolitan area. Prior to enrollment, participants will be randomized to either genetic counseling via videoconferencing with screen-sharing or genetic counseling via videoconferencing without screen-sharing. Using surveys administered at baseline, results disclosure, and 6-months post-results disclosure, we will evaluate the impact of the use of screen-sharing on participant understanding, satisfaction, and uptake of medical recommendations, as well as the psychological and socioeconomic implications of obtaining genome sequencing. Clinical utility, cost, and diagnostic yield of genome sequencing will also be assessed. DISCUSSION: The TeleKidSeq pilot study will contribute to innovations in communicating genomic test results to diverse populations through telehealth technology. In conjunction with NYCKidSeq, this work will inform best practices for the implementation of genomic medicine in diverse, English- and Spanish-speaking populations.
RESUMO
BACKGROUND: Increasingly, genomics is informing clinical practice, but challenges remain for medical professionals lacking genetics expertise, and in access to and clinical utility of genomic testing for minority and underrepresented populations. The latter is a particularly pernicious problem due to the historical lack of inclusion of racially and ethnically diverse populations in genomic research and genomic medicine. A further challenge is the rapidly changing landscape of genetic tests and considerations of cost, interpretation, and diagnostic yield for emerging modalities like whole-genome sequencing. METHODS: The NYCKidSeq project is a randomized controlled trial recruiting 1130 children and young adults predominantly from Harlem and the Bronx with suspected genetic disorders in three disease categories: neurologic, cardiovascular, and immunologic. Two clinical genetic tests will be performed for each participant, either proband, duo, or trio whole-genome sequencing (depending on sample availability) and proband targeted gene panels. Clinical utility, cost, and diagnostic yield of both testing modalities will be assessed. This study will evaluate the use of a novel, digital platform (GUÍA) to digitize the return of genomic results experience and improve participant understanding for English- and Spanish-speaking families. Surveys will collect data at three study visits: baseline (0 months), result disclosure visit (ROR1, + 3 months), and follow-up visit (ROR2, + 9 months). Outcomes will assess parental understanding of and attitudes toward receiving genomic results for their child and behavioral, psychological, and social impact of results. We will also conduct a pilot study to assess a digital tool called GenomeDiver designed to enhance communication between clinicians and genetic testing labs. We will evaluate GenomeDiver's ability to increase the diagnostic yield compared to standard practices, improve clinician's ability to perform targeted reverse phenotyping, and increase the efficiency of genetic testing lab personnel. DISCUSSION: The NYCKidSeq project will contribute to the innovations and best practices in communicating genomic test results to diverse populations. This work will inform strategies for implementing genomic medicine in health systems serving diverse populations using methods that are clinically useful, technologically savvy, culturally sensitive, and ethically sound. TRIAL REGISTRATION: ClinicalTrials.gov NCT03738098 . Registered on November 13, 2018 Trial Sponsor: Icahn School of Medicine at Mount Sinai Contact Name: Eimear Kenny, PhD (Principal Investigator) Address: Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., Box 1003, New York, NY 10029 Email: eimear.kenny@mssm.edu.
Assuntos
Testes Genéticos , Genômica , Criança , Humanos , Cidade de Nova Iorque , Pais , Projetos Piloto , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Adulto JovemRESUMO
Atypical processing and integration of sensory inputs are hypothesized to play a role in unusual sensory reactions and social-cognitive deficits in autism spectrum disorder (ASD). Reports on the relationship between objective metrics of sensory processing and clinical symptoms, however, are surprisingly sparse. Here we examined the relationship between neurophysiological assays of sensory processing and (1) autism severity and (2) sensory sensitivities, in individuals with ASD aged 6-17. Multiple linear regression indicated significant associations between neural markers of auditory processing and multisensory integration, and autism severity. No such relationships were apparent for clinical measures of visual/auditory sensitivities. These data support that aberrant early sensory processing contributes to autism symptoms, and reveal the potential of electrophysiology to objectively subtype autism.