Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925868

RESUMO

Nitric oxide (NO) is essential in the control of fetoplacental vascular tone, maintaining a high flow-low resistance circulation that favors oxygen and nutrient delivery to the fetus. Reduced fetoplacental blood flow is associated with pregnancy complications and is one of the major causes of fetal growth restriction (FGR). The reduction of dietary nitrate to nitrite and subsequently NO may provide an alternative source of NO in vivo. We have previously shown that nitrite induces vasorelaxation in placental blood vessels from normal pregnancies, and that this effect is enhanced under conditions of hypoxia. Herein, we aimed to determine whether nitrite could also act as a vasodilator in FGR. Using wire myography, vasorelaxant effects of nitrite were assessed on pre-constricted chorionic plate arteries (CPAs) and veins (CPVs) from normal and FGR pregnancies under normoxic and hypoxic conditions. Responses to the NO donor, sodium nitroprusside (SNP), were assessed in parallel. Nitrate and nitrite concentrations were measured in fetal plasma. Hypoxia significantly enhanced vasorelaxation to nitrite in FGR CPAs (p < 0.001), and in both normal (p < 0.001) and FGR (p < 0.01) CPVs. Vasorelaxation to SNP was also potentiated by hypoxia in both normal (p < 0.0001) and FGR (p < 0.01) CPVs. However, compared to vessels from normal pregnancies, CPVs from FGR pregnancies showed significantly lower reactivity to SNP (p < 0.01). Fetal plasma concentrations of nitrate and nitrite were not different between normal and FGR pregnancies. Together, these data show that nitrite-mediated vasorelaxation is preserved in FGR, suggesting that interventions targeting this pathway have the potential to improve fetoplacental blood flow in FGR pregnancies.


Assuntos
Retardo do Crescimento Fetal , Nitritos/farmacologia , Complicações na Gravidez/metabolismo , Vasodilatação/efeitos dos fármacos , Córion , Feminino , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/metabolismo , Feto/metabolismo , Humanos , Hipóxia , Miografia/métodos , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Nitritos/metabolismo , Placenta/metabolismo , Circulação Placentária/efeitos dos fármacos , Circulação Placentária/fisiologia , Gravidez , Vasodilatadores/farmacologia
2.
J Physiol ; 598(18): 4079-4092, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32368787

RESUMO

KEY POINTS: Maternal hypertension is associated with increased rates of pregnancy pathologies, including fetal growth restriction, due at least in part to reductions in nitric oxide (NO) bioavailability and associated vascular dysfunction. Dietary nitrate supplementation, from beetroot juice (BRJ), has been shown to increase NO bioavailability and improve cardiovascular function in both preclinical and clinical studies. This study is the first to investigate effects of dietary nitrate supplementation in a pregnant animal model. Importantly, the effects of nitrate-containing BRJ were compared with both 'placebo' (nitrate-depleted) BRJ as well as water to control for potential nitrate-independent effects. Our data show novel, nitrate-independent effects of BRJ to lower blood pressure and improve vascular function in endothelial nitric oxide synthase knockout (eNOS-/- ) mice. These findings suggest potential beneficial effects of BRJ supplementation in pregnancy, and emphasize the importance of accounting for nitrate-independent effects of BRJ in study design and interpretation. ABSTRACT: Maternal hypertension is associated with adverse pregnancy outcomes, including fetal growth restriction (FGR), due in part to reductions in nitric oxide (NO) bioavailability. We hypothesized that maternal dietary nitrate administration would increase NO bioavailability to reduce systolic blood pressure (SBP), improve vascular function and increase fetal growth in pregnant endothelial NO synthase knockout (eNOS-/- ) mice, which exhibit hypertension, endothelial dysfunction and FGR. Pregnant wildtype (WT) and eNOS-/- mice were supplemented with nitrate-containing beetroot juice (BRJ+) from gestational day (GD) 12.5. Control mice received an equivalent dose of nitrate-depleted BRJ (BRJ-) or normal drinking water. At GD17.5, maternal SBP was measured; at GD18.5, maternal nitrate/nitrite concentrations, uterine artery (UtA) blood flow and endothelial function were assessed, and pregnancy outcomes were determined. Plasma nitrate concentrations were increased in both WT and eNOS-/- mice supplemented with BRJ+ (P < 0.001), whereas nitrite concentrations were increased only in eNOS-/- mice (P < 0.001). BRJ- did not alter nitrate/nitrite concentrations. SBP was lowered and UtA endothelial function was enhanced in eNOS-/- mice supplemented with either BRJ+ or BRJ-, indicating nitrate-independent effects of BRJ. Improvements in endothelial function in eNOS-/- mice were abrogated in the presence of 25 mm KCl, implicating enhanced EDH signalling in BRJ- treated animals. At GD18.5, eNOS-/- fetuses were significantly smaller than WT animals (P < 0.001), but BRJ supplementation did not affect fetal weight. BRJ may be a beneficial intervention in pregnancies associated with hypertension, endothelial dysfunction and reduced NO bioavailability. Our data showing biological effects of non-nitrate components of BRJ have implications for both interpretation of previous findings and in the design of future clinical trials.


Assuntos
Beta vulgaris , Nitratos , Animais , Pressão Sanguínea , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Sucos de Frutas e Vegetais , Camundongos , Óxido Nítrico Sintase Tipo III/genética , Gravidez
3.
J Physiol ; 597(19): 4975-4990, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400764

RESUMO

KEY POINTS: Fetal growth restriction (FGR) is a major risk factor for stillbirth and has significant impact upon lifelong health. A small, poorly functioning placenta, as evidenced by reduced transport of nutrients to the baby, underpins FGR. It remains unclear how a small but normal placenta differs from the small FGR placenta in terms of ability to transfer nutrients to the fetus. Placental transport of glutamine and glutamate, key amino acids for fetal growth, was assessed in normal mice and those with FGR. Glutamine and glutamate transport was greater in the lightest versus heaviest placenta in a litter of normally grown mice. Placentas of mice with FGR had increased transport capacity in mid-pregnancy, but this adaptation was insufficient in late pregnancy. Placental adaptations, in terms of increased nutrient transport (per gram) to compensate for small size, appear to achieve appropriate fetal growth in normal pregnancy. Failure of this adaptation might contribute to FGR. ABSTRACT: Fetal growth restriction (FGR), a major risk factor for stillbirth, and neonatal and adulthood morbidity, is associated with reduced placental size and decreased placental nutrient transport. In mice, a small, normal placenta increases its nutrient transport, thus compensating for its reduced size and maintaining normal fetal growth. Whether this adaptation occurs for glutamine and glutamate, two key amino acids for placental metabolism and fetal growth, is unknown. Additionally, an assessment of placental transport of glutamine and glutamate between FGR and normal pregnancy is currently lacking. We thus tested the hypothesis that the transport of glutamine and glutamate would be increased (per gram of tissue) in a small normal placenta [C57BL6/J (wild-type, WT) mice], but that this adaptation fails in the small dysfunctional placenta in FGR [insulin-like growth factor 2 knockout (P0) mouse model of FGR]. In WT mice, comparing the lightest versus heaviest placenta in a litter, unidirectional maternofetal clearance (Kmf ) of 14 C-glutamine and 14 C-glutamate (glutamine Kmf and glutamate Kmf ) was significantly higher at embryonic day (E) 18.5, in line with increased expression of LAT1, a glutamine transporter protein. In P0 mice, glutamine Kmf and glutamate Kmf were higher (P0 versus wild-type littermates, WTL) at E15.5. At E18.5, glutamine Kmf remained elevated whereas glutamate Kmf was similar between groups. In summary, we provide evidence that glutamine Kmf and glutamate Kmf adapt according to placental size in WT mice. The placenta of the growth-restricted P0 fetus also elevates transport capacity to compensate for size at E15.5, but this adaptation is insufficient at E18.5; this may contribute to decreased fetal growth.


Assuntos
Adaptação Fisiológica , Retardo do Crescimento Fetal/fisiopatologia , Glutamina/metabolismo , Troca Materno-Fetal/fisiologia , Placenta/fisiologia , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico , Radioisótopos de Carbono , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Feminino , Regulação da Expressão Gênica , Genótipo , Ácido Glutâmico/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez
4.
J Immunol ; 198(1): 443-451, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903743

RESUMO

Excessive placental inflammation is associated with several pathological conditions, including stillbirth and fetal growth restriction. Although infection is a known cause of inflammation, a significant proportion of pregnancies have evidence of inflammation without any detectable infection. Inflammation can also be triggered by endogenous mediators, called damage associated molecular patterns or alarmins. One of these damage-associated molecular patterns, uric acid, is increased in the maternal circulation in pathological pregnancies and is a known agonist of the Nlrp3 inflammasome and inducer of inflammation. However, its effects within the placenta and on pregnancy outcomes remain largely unknown. We found that uric acid (monosodium urate [MSU]) crystals induce a proinflammatory profile in isolated human term cytotrophoblast cells, with a predominant secretion of IL-1ß and IL-6, a result confirmed in human term placental explants. The proinflammatory effects of MSU crystals were shown to be IL-1-dependent using a caspase-1 inhibitor (inhibits IL-1 maturation) and IL-1Ra (inhibits IL-1 signaling). The proinflammatory effect of MSU crystals was accompanied by trophoblast apoptosis and decreased syncytialization. Correspondingly, administration of MSU crystals to rats during late gestation induced placental inflammation and was associated with fetal growth restriction. These results make a strong case for an active proinflammatory role of MSU crystals at the maternal-fetal interface in pathological pregnancies, and highlight a key mediating role of IL-1. Furthermore, our study describes a novel in vivo animal model of noninfectious inflammation during pregnancy, which is triggered by MSU crystals and leads to reduced fetal growth.


Assuntos
Corioamnionite/imunologia , Retardo do Crescimento Fetal/imunologia , Interleucina-1/imunologia , Trofoblastos/patologia , Ácido Úrico/imunologia , Animais , Corioamnionite/patologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Gravidez , Ratos , Ratos Sprague-Dawley
5.
Int J Obes (Lond) ; 42(6): 1202-1210, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899523

RESUMO

INTRODUCTION: Alkaline phosphatase is implicated in intestinal lipid transport and in the development of obesity. Placental alkaline phosphatase is localised to the microvillous plasma membrane of the placental syncytiotrophoblast at the maternal-fetal interface, but its role is unclear. We investigated the relations of placental alkaline phosphatase activity and mRNA expression with maternal body composition and offspring fat mass in humans. METHODS: Term human placentas from the UK Birthright cohort (n = 52) and the Southampton Women's Survey (SWS) (n = 95) were studied. In the Birthright cohort, alkaline phosphatase activity was measured in placental microvillous plasma membrane vesicles. In the SWS, alkaline phosphatase mRNA was measured using Nanostring. Alkaline phosphatase gene expression was compared to other lipid-related genes. RESULTS: In Birthright samples placental microvillous plasma membrane alkaline phosphatase activity was positively associated with maternal triceps skinfold thickness and BMI (ß = 0.04 (95% CI: 0.01-0.06) and ß = 0.02 (0.00-0.03) µmol/mg protein/min per SD, P = 0.002 and P = 0.05, respectively) after adjusting for potential confounders. In SWS samples placental alkaline phosphatase mRNA expression in term placenta was positively associated with maternal triceps skinfold (ß = 0.24 (0.04, 0.44) SD/SD, P = 0.02), had no association with neonatal %fat mass (ß = 0.01 (-0.20 to 0.21) SD/SD, P = 0.93) and was negatively correlated with %fat mass at ages 4 (ß = -0.28 (-0.52 to -0.04) SD/SD, P = 0.02), 6-7 (ß = -0.25 (-0.49 to -0.02) SD/SD, P = 0.03) years. When compared with placental expression of other genes, alkaline phosphatase expression was positively related to genes including the lysophosphatidylcholine transporter MFSD2A (major facilitator superfamily domain containing 2A, P < 0.001) and negatively related to genes including the fatty acid transport proteins 2 and 3 (P = 0.001, P < 0.001). CONCLUSIONS: Our findings suggest relationships between placental alkaline phosphatase and both maternal and childhood adiposity. The inverse relationship between placental alkaline phosphatase gene expression and childhood %fat mass suggests that placental alkaline phosphatase may help to protect the foetus from the adverse effects of maternal obesity.


Assuntos
Fosfatase Alcalina/metabolismo , Isoenzimas/metabolismo , Obesidade/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Proteínas Supressoras de Tumor/metabolismo , Adulto , Transporte Biológico , Composição Corporal , Desenvolvimento Infantil , Estudos de Coortes , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Recém-Nascido , Obesidade/fisiopatologia , Gravidez , Simportadores , Nascimento a Termo
6.
Nitric Oxide ; 80: 82-88, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179715

RESUMO

Adequate perfusion of the placental vasculature is essential to meet the metabolic demands of fetal growth and development. Lacking neural control, local tissue metabolites, circulating and physical factors contribute significantly to blood flow regulation. Nitric oxide (NO) is a key regulator of fetoplacental vascular tone. Nitrite, previously considered an inert end-product of NO oxidation, has been shown to provide an important source of NO. Reduction of nitrite to NO may be particularly relevant in tissue when the oxygen-dependent NO synthase (NOS) activity is compromised, e.g. in hypoxia. The contribution of this pathway in the placenta is currently unknown. We hypothesised that nitrite vasodilates human placental blood vessels, with enhanced efficacy under hypoxia. Placentas were collected from uncomplicated pregnancies and the vasorelaxant effect of nitrite (10-6-5x10-3 M) was assessed using wire myography on isolated pre-constricted chorionic plate arteries (CPAs) and veins (CPVs) under normoxic (pO2 ∼5%) and hypoxic (pO2 ∼1%) conditions. The dependency on the NO-sGC-cGMP pathway and known nitrite reductase (NiR) activities was also investigated. Nitrite caused concentration-dependent vasorelaxation in both arteries and veins, and this effect was enhanced by hypoxia, significantly in CPVs (P < 0.01) and with a trend in CPAs (P = 0.054). Pre-incubation with NO scavengers (cPTIO and oxyhemoglobin) attenuated (P < 0.01 and P < 0.0001, respectively), and the sGC inhibitor ODQ completely abolished nitrite-mediated vasorelaxation, confirming the involvement of NO and sGC. Inhibition of potential NiR enzymes xanthine oxidoreductase, mitochondrial aldehyde dehydrogenase and mitochondrial bc1 complex did not attenuate vasorelaxation. This data suggests that nitrite may provide an important reservoir of NO bioactivity within the placenta to enhance blood flow when fetoplacental oxygenation is impaired, as occurring in pregnancy diseases such as pre-eclampsia and fetal growth restriction.


Assuntos
Artérias/fisiologia , Córion/irrigação sanguínea , Hipóxia/metabolismo , Nitritos/metabolismo , Veias/fisiologia , Adulto , Artérias/efeitos dos fármacos , Benzoatos/farmacologia , GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Imidazóis/farmacologia , Nitritos/farmacologia , Placenta/irrigação sanguínea , Gravidez , Nitrito de Sódio/administração & dosagem , Nitrito de Sódio/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Veias/efeitos dos fármacos
7.
Nitric Oxide ; 80: 37-44, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30099096

RESUMO

Chronic hypertension in pregnancy is associated with significant adverse pregnancy outcomes, increasing the risk of pre-eclampsia, fetal growth restriction and preterm birth. Dietary nitrate, abundant in green leafy vegetables and beetroot, is reduced in vivo to nitrite and subsequently nitric oxide, and has been demonstrated to lower blood pressure, improve vascular compliance and enhance blood flow in non-pregnant humans and animals. The primary aims of this study were to determine the acceptability and efficacy of dietary nitrate supplementation, in the form of beetroot juice, to lower blood pressure in hypertensive pregnant women. In this double-blind, placebo-controlled feasibility trial, 40 pregnant women received either daily nitrate supplementation (70 mL beetroot juice, n = 20) or placebo (70 mL nitrate-depleted beetroot juice, n = 20) for 8 days. Blood pressure, cardiovascular function and uteroplacental blood flow was assessed at baseline and following acute (3 h) and prolonged (8 days) supplementation. Plasma and salivary samples were collected for analysis of nitrate and nitrite concentrations and acceptability of this dietary intervention was assessed based on questionnaire feedback. Dietary nitrate significantly increased plasma and salivary nitrate/nitrite concentrations compared with placebo juice (p < 0.001), with marked variation between women. Compared with placebo, there was no overall reduction in blood pressure in the nitrate-treated group; however there was a highly significant correlation between changes in plasma nitrite concentrations and changes in diastolic blood pressure in the nitrate-treated arm only (r = -0.6481; p = 0.0042). Beetroot juice supplementation was an acceptable dietary intervention to 97% of women. This trial confirms acceptability and potential efficacy of dietary nitrate supplementation in pregnant women. Conversion of nitrate to nitrite critically involves oral bacterial nitrate reductase activities. We speculate that differences in efficacy of nitrate supplementation relate to differences in the oral microbiome, which will be investigated in future studies.


Assuntos
Beta vulgaris , Pressão Sanguínea/efeitos dos fármacos , Sucos de Frutas e Vegetais , Hipertensão Induzida pela Gravidez/dietoterapia , Nitratos/administração & dosagem , Adulto , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/uso terapêutico , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Humanos , Recém-Nascido , Nitratos/sangue , Placebos , Gravidez , Resultado do Tratamento
8.
J Obstet Gynaecol Res ; 44(1): 124-133, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29027317

RESUMO

AIM: Underlying mechanisms of poor pregnancy outcome in obese (OB) mothers (body mass index [BMI] ≥ 30 kg/m2 ) are unknown. Our studies demonstrate that OB pregnant women have altered myometrial artery (MA) function related to the thromboxane and nitric oxide pathways. In obesity, increased central fat mass is associated with an altered endocrine milieu. We tested the hypothesis that in OB pregnant women the omentum, a central fat store, releases factors that promote dysfunction in normal MAs. METHODS: Myometrial and omental adipose tissue biopsies were obtained from women with uncomplicated term pregnancies. Omental adipose tissue explants from six normal weight (NW; BMI 18.5-24.9 kg/m2 ) and six OB (BMI ≥ 30 kg/m2 ) women were cultured and the conditioned medium collected and pooled to produce NW medium and OB medium. Adipokine concentrations were measured using enzyme-linked immunosorbent assays. Wire myography was used to assess the effect of conditioned medium (NW or OB; N = 7) or leptin (100 nM; N = 5) exposure on MA responses to U46619 (thromboxane-mimetic) and bradykinin (endothelial-dependent vasodilator). RESULTS: OB medium had higher leptin and lower adiponectin levels than NW medium. U46619 and bradykinin concentration response curves shifted upwards in MAs exposed to OB medium but were unaffected by leptin. CONCLUSIONS: Omental adipose tissue from OB pregnant women produced altered concentrations of adipokines. Acute OB medium exposure induced MA dysfunction, an effect not mirrored by exposure to leptin. These data suggest that an aberrant endocrine environment created by increased central adiposity in OB pregnant women induces vascular endothelial dysregulation, which may predispose them to a poor pregnancy outcome.


Assuntos
Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Leptina/metabolismo , Miométrio/irrigação sanguínea , Miométrio/metabolismo , Obesidade/metabolismo , Omento/metabolismo , Complicações na Gravidez/metabolismo , Células Cultivadas , Feminino , Humanos , Gravidez , Adulto Jovem
9.
Am J Physiol Endocrinol Metab ; 310(1): E24-31, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26530156

RESUMO

Enhancing placental insulin-like growth factor (IGF) availability appears to be an attractive strategy for improving outcomes in fetal growth restriction (FGR). Our approach was the novel use of [Leu(27)]IGF-II, a human IGF-II analog that binds the IGF-II clearance receptor IGF-IIR in fetal growth-restricted (FGR) mice. We hypothesized that the impact of [Leu(27)]IGF-II infusion in C57BL/6J (wild-type) and endothelial nitric oxide synthase knockout (eNOS(-/-); FGR) mice would be to enhance fetal growth and investigated this from mid- to late gestation; 1 mg·kg(-1)·day(-1) [Leu(27)]IGF-II was delivered via a subcutaneous miniosmotic pump from E12.5 to E18.5. Fetal and placental weights recorded at E18.5 were used to generate frequency distribution curves; fetuses <5th centile were deemed growth restricted. Placentas were harvested for immunohistochemical analysis of the IGF system, and maternal serum was collected for measurement of exogenously administered IGF-II. In WT pregnancies, [Leu(27)]IGF-II treatment halved the number of FGR fetuses, reduced fetal(P = 0.028) and placental weight variations (P = 0.0032), and increased the numbers of pups close to the mean fetal weight (131 vs. 112 pups within 1 SD). Mixed-model analysis confirmed litter size to be negatively correlated with fetal and placental weight and showed that [Leu(27)]IGF-II preferentially improved fetal weight in the largest litters, as defined by number. Unidirectional (14C)MeAIB transfer per gram placenta (System A amino acid transporter activity) was inversely correlated with fetal weight in [Leu(27)]IGF-II-treated WT animals (P < 0.01). In eNOS(-/-) mice, [Leu(27)]IGF-II reduced the number of FGR fetuses(1 vs. 5 in the untreated group). The observed reduction in FGR pup numbers in both C57 and eNOS(-/-) litters suggests the use of this analog as a means of standardizing and rescuing fetal growth, preferentially in the smallest offspring.


Assuntos
Desenvolvimento Fetal/efeitos dos fármacos , Retardo do Crescimento Fetal/patologia , Fator de Crescimento Insulin-Like II/análogos & derivados , Animais , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Retardo do Crescimento Fetal/tratamento farmacológico , Humanos , Fator de Crescimento Insulin-Like II/administração & dosagem , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/genética , Gravidez , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia
10.
FASEB J ; 29(6): 2583-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25761365

RESUMO

Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [(14)C]L-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [(14)C]L-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with L-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.


Assuntos
Aminoácidos/metabolismo , Membrana Celular/metabolismo , Simulação por Computador , Modelos Biológicos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Aminoácidos/farmacocinética , Transporte Biológico , Western Blotting , Radioisótopos de Carbono , Feminino , Imunofluorescência , Cadeias Leves da Proteína-1 Reguladora de Fusão/metabolismo , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Microvilosidades/metabolismo , Placenta/citologia , Placenta/metabolismo , Gravidez , Serina/metabolismo , Serina/farmacocinética , Vesículas Transportadoras/metabolismo
11.
BMC Clin Pathol ; 16: 1, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26865834

RESUMO

BACKGROUND: Stillbirth is frequently the result of pathological processes involving the placenta. Understanding the significance of specific lesions is hindered by qualitative subjective evaluation. We hypothesised that quantitative assessment of placental morphology would identify alterations between different causes of stillbirth and that placental phenotype would be independent of post-mortem effects and differ between live births and stillbirths with the same condition. METHODS: Placental tissue was obtained from stillbirths with an established cause of death, those of unknown cause and live births. Image analysis was used to quantify different facets of placental structure including: syncytial nuclear aggregates (SNAs), proliferative cells, blood vessels, leukocytes and trophoblast area. These analyses were then applied to placental tissue from live births and stillbirths associated with fetal growth restriction (FGR), and to placental lobules before and after perfusion of the maternal side of the placental circulation to model post-mortem effects. RESULTS: Different causes of stillbirth, particularly FGR, cord accident and hypertension had altered placental morphology compared to healthy live births. FGR stillbirths had increased SNAs and trophoblast area and reduced proliferation and villous vascularity; 2 out of 10 stillbirths of unknown cause had similar placental morphology to FGR. Stillbirths with FGR had reduced vascularity, proliferation and trophoblast area compared to FGR live births. Ex vivo perfusion did not reproduce the morphological findings of stillbirth. CONCLUSION: These preliminary data suggest that addition of quantitative assessment of placental morphology may distinguish between different causes of stillbirth; these changes do not appear to be due to post-mortem effects. Applying quantitative assessment in addition to qualitative assessment might reduce the proportion of unexplained stillbirths.

12.
J Physiol ; 593(14): 3077-92, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25920377

RESUMO

Increased vascular resistance and reduced fetoplacental blood flow are putative aetiologies in the pathogenesis of fetal growth restriction (FGR); however, the regulating sites and mechanisms remain unclear. We hypothesised that placental vessels dictate fetoplacental resistance and in FGR exhibit endothelial dysfunction and reduced flow-mediated vasodilatation (FMVD). Resistance was measured in normal pregnancies (n = 10) and FGR (n = 10) both in vivo by umbilical artery Doppler velocimetry and ex vivo by dual placental perfusion. Ex vivo FMVD is the reduction in fetal-side inflow hydrostatic pressure (FIHP) following increased flow rate. Results demonstrated a significant correlation between vascular resistance measured in vivo and ex vivo in normal pregnancy, but not in FGR. In perfused FGR placentas, vascular resistance was significantly elevated compared to normal placentas (58 ± 7.7 mmHg and 36.8 ± 4.5 mmHg, respectively; 8 ml min(-1) ; means ± SEM; P < 0.0001) and FMVD was severely reduced (3.9 ± 1.3% and 9.1 ± 1.2%, respectively). In normal pregnancies only, the highest level of ex vivo FMVD was associated with the lowest in vivo resistance. Inhibition of NO synthesis during perfusion (100 µm l-NNA) moderately elevated FIHP in the normal group, but substantially in the FGR group. Human placenta artery endothelial cells from FGR groups exhibited increased shear stress-induced NO generation, iNOS expression and eNOS expression compared with normal groups. In conclusion, fetoplacental resistance is determined by placental vessels, and is increased in FGR. The latter also exhibit reduced FMVD, but with a partial compensatory increased NO generation capacity. The data support our hypothesis, which highlights the importance of FMVD regulation in normal and dysfunctional placentation.


Assuntos
Retardo do Crescimento Fetal/fisiopatologia , Circulação Placentária , Vasodilatação , Adulto , Fatores Biológicos/genética , Fatores Biológicos/metabolismo , Feminino , Retardo do Crescimento Fetal/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Masculino , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Gravidez
13.
Int J Mol Sci ; 16(6): 12907-24, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26062129

RESUMO

Complications of pregnancy represent a significant disease burden, with both immediate and lasting consequences for mother and baby. Two key pregnancy complications, fetal growth restriction (FGR) and preeclampsia (PE), together affect around 10%-15% of all pregnancies worldwide. Despite this high incidence, there are currently no therapies available to treat these pregnancy disorders. Early delivery remains the only intervention to reduce the risk of severe maternal complications and/or stillbirth of the baby; however early delivery itself is associated with increased risk of neonatal mortality and morbidity. As such, there is a pressing need to develop new and effective treatments that can prevent or treat FGR and PE. Animal models have been essential in identifying and screening potential new therapies in this field. In this review, we address recent progress that has been made in developing therapeutic strategies for pregnancy disorders, some of which are now entering clinical trials.


Assuntos
Ensaios Clínicos como Assunto , Retardo do Crescimento Fetal/tratamento farmacológico , Pré-Eclâmpsia/tratamento farmacológico , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Retardo do Crescimento Fetal/prevenção & controle , Humanos , Pré-Eclâmpsia/prevenção & controle , Gravidez
14.
Biol Reprod ; 90(3): 65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24478391

RESUMO

Obese women (body mass index ≥30 kg/m(2)) are at greater risk than normal weight women of pregnancy complications associated with maternal and infant morbidity, particularly the development of cardiovascular disease and metabolic disorders in later life; why this occurs is unknown. Nonpregnant, obese individuals exhibit systemic vascular endothelial dysfunction. We tested the hypothesis that obese pregnant women have altered myometrial arterial function compared to pregnant women of normal (18-24 kg/m(2)) and overweight (25-29 kg/m(2)) body mass index. Responses to vasoconstrictors, U46619 (thromboxane mimetic) and arginine vasopressin, and vasodilators, bradykinin and the nitric oxide donor sodium nitroprusside, were assessed by wire myography in myometrial arteries from normal weight (n = 18), overweight (n = 18), and obese (n = 20) women with uncomplicated pregnancies. Thromboxane-prostanoid receptor expression was assessed using immunostaining in myometrial arteries of normal weight and obese women. Vasoconstriction and vasodilatation were impaired in myometrial arteries from obese women with otherwise uncomplicated pregnancies. Disparate agonist responses suggest that vascular function in obese women is not globally dysregulated but may be specific to thromboxane and nitric oxide pathways. Because obesity rates are escalating, it is important to identify the mechanisms underlying impaired vascular function and establish why some obese women compensate for vascular dysfunction and some do not. Future studies are needed to determine whether central adiposity results in an altered endocrine milieu that may promote vascular dysfunction by altering the function of perivascular adipose tissue.


Assuntos
Artérias/fisiopatologia , Miométrio/irrigação sanguínea , Obesidade/fisiopatologia , Transdução de Sinais/fisiologia , Anti-Inflamatórios não Esteroides/farmacologia , Artérias/efeitos dos fármacos , Biópsia , Índice de Massa Corporal , Peso Corporal/fisiologia , Endotélio Vascular/fisiologia , Feminino , Humanos , Imuno-Histoquímica , Indometacina/farmacologia , Miométrio/efeitos dos fármacos , Óxido Nítrico/fisiologia , Pré-Eclâmpsia/fisiopatologia , Gravidez , Transdução de Sinais/efeitos dos fármacos , Tromboxanos/fisiologia , Vasoconstrição/fisiologia , Vasodilatação/fisiologia
15.
Am J Physiol Regul Integr Comp Physiol ; 307(6): R746-54, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25056105

RESUMO

Fetal growth restriction (FGR) affects 3-8% of human pregnancies. Mouse models have provided important etiological data on FGR; they permit the assessment of treatment strategies on the physiological function of both mother and her developing offspring. Our study aimed to 1) develop a method to assess vascular function in fetal mice and 2) as a proof of principle ascertain whether a high dose of sildenafil citrate (SC; Viagra) administered to the pregnant dam affected fetal vascular reactivity. We developed a wire myography methodology for evaluation of fetal vascular function in vitro using the placenta-specific insulin-like growth factor II (Igf2) knockout mouse (P0; a model of FGR). Vascular function was determined in abdominal aortas isolated from P0 and wild-type (WT) fetuses at embryonic day (E) 18.5 of gestation. A subset of dams received SC 0.8 mg/ml via drinking water from E12.5; data were compared with water-only controls. Using wire myography, we found that fetal aortic rings exhibited significant agonist-induced contraction, and endothelium-dependent and endothelium-independent relaxation. Sex-specific alterations in reactivity were noted in both strains. Maternal treatment with SC significantly attenuated endothelium-dependent and endothelium-independent relaxation of fetal aortic rings. Mouse fetal abdominal aortas reproducibly respond to vasoactive agents. Study of these vessels in mouse genetic models of pregnancy complications may 1) help to delineate early signs of abnormal vascular reactivity and 2) inform whether treatments given to the mother during pregnancy may impact upon fetal vascular function.


Assuntos
Aorta Abdominal/fisiopatologia , Retardo do Crescimento Fetal/fisiopatologia , Animais , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/embriologia , Aorta Abdominal/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Idade Gestacional , Fator de Crescimento Insulin-Like II/deficiência , Fator de Crescimento Insulin-Like II/genética , Camundongos , Camundongos Knockout , Fenótipo , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/farmacologia , Gravidez , Purinas/farmacologia , Citrato de Sildenafila , Sulfonas/farmacologia , Vasoconstrição , Vasoconstritores/farmacologia , Vasodilatação , Vasodilatadores/farmacologia
16.
Stem Cells ; 31(7): 1363-70, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23554274

RESUMO

The potency of adult-derived circulating progenitor endothelial colony forming cells (ECFCs) is drastically surpassed by their fetal counterparts. Human pregnancy is associated with robust intensification of blood flow and vascular expansion in the uterus, crucial for placental perfusion and fetal supply. Here, we investigate whether fetal ECFCs transmigrate to maternal bloodstream and home to locations of maternal vasculogenesis, primarily the pregnant uterus. In the first instance, endothelial-like cells, originating from mouse fetuses expressing paternal eGFP, were identified within uterine endothelia. Subsequently, LacZ or enhanced green fluorescent protein (eGFP)-labeled human fetal ECFCs, transplanted into immunodeficient (NOD/SCID) fetuses on D15.5 pregnancy, showed similar integration into the mouse uterus by term. Mature endothelial controls (human umbilical vein endothelial cells), similarly introduced, were unequivocally absent. In humans, SRY was detected in 6 of 12 myometrial microvessels obtained from women delivering male babies. The copy number was calculated at 175 [IQR 149-471] fetal cells per millimeter square endothelium, constituting 12.5% of maternal vessel lumina. Cross-sections of similar human vessels, hybridized for Y-chromosome, positively identified endothelial-associated fetal cells. It appears that through ECFC donation, fetuses assist maternal uterine vascular expansion in pregnancy, potentiating placental perfusion and consequently their own fetal supply. In addition to fetal growth, this cellular mechanism holds implications for materno-fetal immune interactions and long-term maternal vascular health.


Assuntos
Células Endoteliais/fisiologia , Placenta/irrigação sanguínea , Gravidez/fisiologia , Útero/irrigação sanguínea , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Quimerismo , Feminino , Sangue Fetal , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Neovascularização Fisiológica/fisiologia , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Células-Tronco , Útero/metabolismo
17.
Magn Reson Med ; 70(5): 1427-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23280967

RESUMO

PURPOSE: Pregnancy complications such as preeclampsia and fetal growth restriction are sometimes thought to be caused by placental abnormalities associated with reduced oxygenation. Oxygen-enhanced MRI (R1 contrast) and BOLD MRI (R2 * contrast) have the potential to noninvasively investigate this oxygen environment at a range of gestational ages. METHODS: Scanning was carried out at 1.5 T under maternal air and oxygen breathing in a single placental slice in 14 healthy pregnant subjects of gestational ages 21-37 weeks. We report R1 changes using a respiratory-triggered inversion recovery-turbo spin-echo sequence, which is sensitive to changes in PO2 , and R2 * changes using a breathhold multiple gradient-recalled echo sequence sensitive to changes in oxygen saturation. RESULTS: Significant R1 increases (P < 0.005, paired t-test) and R2 * decreases (P < 0.0001, paired t-test) between air and oxygen breathing were demonstrated. ΔR1 decreased with gestational age (P < 0.0005, r = -0.835, Pearson correlation test). No significant effect of gestational age on R2 * change was observed. CONCLUSION: The results demonstrate the feasibility of non-invasive investigation of placental oxygenation using MRI and the sensitivity of R1 oxygen-enhanced MRI to gestational age. The techniques have the potential to provide unique noninvasive biomarkers in compromised pregnancies.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Oximetria/métodos , Oxigênio/farmacocinética , Placenta/metabolismo , Gravidez/metabolismo , Administração por Inalação , Biomarcadores/metabolismo , Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Estudos de Viabilidade , Feminino , Humanos , Oxigênio/administração & dosagem , Placenta/anatomia & histologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Adv Exp Med Biol ; 776: 81-91, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23392873

RESUMO

Taurine is an important nutrient in intrauterine life, being required for fetal organ development and cellular renewal of syncytiotrophoblast (STB), the nutrient transport epithelium of the placenta. As taurine is conditionally essential in human pregnancy, the fetal and placental demand for taurine is met by uptake from maternal blood into STB through the activity of TauT. Pre-eclampsia (PE) and maternal obesity are serious complications of pregnancy, associated with fetal growth restriction (FGR) and abnormal renewal of STB, and maternal obesity is a major risk factor for PE. Here we test the hypothesis that STB TauT activity is reduced in maternal obesity and PE compared to normal pregnancy.STB TauT activity, measured in fragments of placental tissue, was negatively related to maternal BMI over the range 18-46 kg/m(2) in both the first trimester (7-12 weeks gestation) and at term (p < 0.01; linear regression). Neither TauT activity nor expression in the first trimester differed to normal pregnancy at term. STB TauT activity was significantly lower in PE than normal pregnancy (p < 0.01). Neuropeptide Y (NPY), a protein kinase C (PKC) activator which is elevated in PE and obesity, reduced STB TauT activity by 20% (50 pM-50 nM: 2 h) (p < 0.03). Activation of PKC by phorbol 12-myristate-13-acetate (1 µM) reduced TauT activity by 18% (p < 0.05). As TauT activity is inhibited by phosphorylation, we propose that NPY activates PKC in the STB which phosphorylates TauT in PE and maternal obesity.Reduced TauT activity could contribute to dysregulated renewal of STB and FGR that are common to PE and maternal obesity.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Índice de Massa Corporal , Feminino , Humanos , Neuropeptídeo Y/farmacologia , Placenta/efeitos dos fármacos , Gravidez , Primeiro Trimestre da Gravidez/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
19.
Am J Physiol Endocrinol Metab ; 302(2): E233-42, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22028413

RESUMO

Teenagers have an increased risk of delivering small-for-gestational-age (SGA) infants. Young maternal age and continued skeletal growth have been implicated as causal factors. In growing adolescent sheep, impaired placental development and nutrient transfer cause reduced birth weight. In human pregnancies, SGA is associated with reduced placental amino acid transport. Maternal growth has no effect on placental morphology or cell turnover, but growing teenagers have higher birth weight:placental weight ratios than nongrowing teenagers. We hypothesized that placental nutrient transporter activity would be affected by maternal age and/or growth status. Placentas from teenagers and adults were collected. Teenagers were defined as growing or nongrowing based on knee height measurements. System A amino acid transporter activity was quantified as sodium-dependent uptake of [(14)C]methylaminoisobutyric acid into placental fragments. Teenagers had lower placental system A activity than adults (P < 0.05). In adults, placental system A activity was lower in SGA infants than appropriate-for-gestational-age (AGA) infants (P < 0.05). In teenagers, AGA and SGA infants had lower placental system A activity than AGA infants born to adults (P < 0.05). Placental system A activity was higher in growing teenagers than in nongrowing teenagers (P < 0.001). Placental mRNA expression of system A transporter isoforms SLC38A1 and -2 was lower in teenagers than in adults (P < 0.05) but did not differ between growing and nongrowing teenagers. There was no difference in transporter protein expression/localization between cohorts. Teenagers have inherently reduced placental transport, which may underlie their susceptibility to delivering SGA infants. Growing teenagers appear to overcome this susceptibility by stimulating the activity, but not expression, of system A transporters.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Recém-Nascido Pequeno para a Idade Gestacional/metabolismo , Idade Materna , Placenta/metabolismo , Adolescente , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez
20.
Biol Reprod ; 87(1): 25, 1-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22423051

RESUMO

Fetal growth restriction (FGR) greatly increases the risk of perinatal morbidity and mortality and is associated with increased uterine artery resistance and levels of oxidative stress. There are currently no available treatments for this condition. The hypothesis that the antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (Tempol) would improve uterine artery function and rescue fetal growth was tested in a mouse model of FGR, using the endothelial nitric oxide synthase knockout mouse (Nos3(-/-)). Pregnant Nos3(-/-) and control C57BL/6J mice were treated with the superoxide dismutase-mimetic Tempol (1 mmol/L) or vehicle from Gestational Day 12.5 to 18.5. Tempol treatment significantly increased pup weight (P < 0.05) and crown-rump length (P < 0.01) in C57BL/6J and Nos3(-/-) mice. Uterine artery resistance was increased in Nos3(-/-) mice (P < 0.05); Tempol significantly increased end diastolic velocity in Nos3(-/-) mice (P < 0.05). Superoxide production in uterine arteries did not differ between C57BL/6J and Nos3(-/-) mice but was significantly increased in placentas from Nos3(-/-) mice (P < 0.05). This was not reduced by Tempol treatment. Placental System A activity was reduced in Nos3(-/-) mice (P < 0.01); this was not improved by treatment with Tempol. Treatment of Nos3(-/-) mice with Tempol, however, was associated with reduced vascular density in the placental bed (P < 0.05). This study demonstrated that treatment with the antioxidant Tempol is able to improve fetal growth in a mouse model of FGR. This was associated with an increase in uterine artery blood flow velocity but not an improvement in uterine artery function or placental System A activity.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Retardo do Crescimento Fetal/tratamento farmacológico , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Materiais Biomiméticos/farmacologia , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Desenvolvimento Fetal/fisiologia , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Estresse Oxidativo/efeitos dos fármacos , Placenta/irrigação sanguínea , Placenta/efeitos dos fármacos , Placenta/patologia , Placenta/fisiopatologia , Gravidez , Marcadores de Spin , Superóxido Dismutase/metabolismo , Artéria Uterina/efeitos dos fármacos , Artéria Uterina/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA