RESUMO
Natural and chemically modified polysaccharides are extensively employed across a wide array of industries, leading to their prevalence in the waste streams of industrialized societies. With projected increasing demand, a pressing challenge is to swiftly assess and predict their biodegradability to inform the development of new sustainable materials. In this study, we developed a scalable method to evaluate polysaccharide breakdown by measuring microbial growth and analyzing microbial genomes. Our approach, applied to polysaccharides with various structures, correlates strongly with well-established regulatory methods based on oxygen demand. We show that modifications to the polysaccharide structure decreased degradability and favored the growth of microbes adapted to break down chemically modified sugars. More broadly, we discovered two main types of microbial communities associated with different polysaccharide structuresâone dominated by fast-growing microbes and another by specialized degraders. Surprisingly, we were able to predict biodegradation rates based only on two genomic features that define these communities: the abundance of genes related to rRNA (indicating fast growth) and the abundance of glycoside hydrolases (enzymes that break down polysaccharides), which together predict nearly 70% of the variation in polysaccharide breakdown. This suggests a trade-off, whereby microbes are either adapted for fast growth or for degrading complex polysaccharide chains, but not both. Finally, we observe that viral elements (prophages) encoded in the genomes of degrading microbes are induced in easily degradable polysaccharides, leading to complex dynamics in biomass accumulation during degradation. In summary, our work provides a practical approach for efficiently assessing polymer degradability and offers genomic insights into how microbes break down polysaccharides.
Assuntos
Biodegradação Ambiental , Polissacarídeos , Polissacarídeos/metabolismo , GenômicaRESUMO
Fucoidans are a diverse class of sulfated polysaccharides integral to the cell wall of brown algae, and due to their various bioactivities, they are potential drugs. Standardized work with fucoidans is required for structure-function studies, but remains challenging since available fucoidan preparations are often contaminated with other algal compounds. Additionally, fucoidans are structurally diverse depending on species and season, urging the need for standardized purification protocols. Here, we use ion-exchange chromatography to purify different fucoidans and found a high structural diversity between fucoidans. Ion-exchange chromatography efficiently removes the polysaccharides alginate and laminarin and other contaminants such as proteins and phlorotannins across a broad range of fucoidans from major brown algal orders including Ectocarpales, Laminariales and Fucales. By monomer composition, linkage analysis and NMR characterization, we identified galacturonic acid, glucuronic acid and O-acetylation as new structural features of certain fucoidans and provided a novel structure of fucoidan from Durvillaea potatorum with α-1,3-linked fucose backbone and ß-1,6 and ß-1,3 galactose branches. This study emphasizes the use of standardized ion-exchange chromatography to obtain defined fucoidans for subsequent molecular studies.
Assuntos
Phaeophyceae , Sulfatos , Fucose , Polissacarídeos/química , Sulfatos/químicaRESUMO
How enteric pathogens adapt their metabolism to a dynamic gut environment is not yet fully understood. To investigate how Salmonella enterica Typhimurium (S.Tm) colonizes the gut, we conducted an in vivo transposon mutagenesis screen in a gnotobiotic mouse model. Our data implicate mixed-acid fermentation in efficient gut-luminal growth and energy conservation throughout infection. During initial growth, the pathogen utilizes acetate fermentation and fumarate respiration. After the onset of gut inflammation, hexoses appear to become limiting, as indicated by carbohydrate analytics and the increased need for gluconeogenesis. In response, S.Tm adapts by ramping up ethanol fermentation for redox balancing and supplying the TCA cycle with α-ketoglutarate for additional energy. Our findings illustrate how S.Tm flexibly adapts mixed fermentation and its use of the TCA cycle to thrive in the changing gut environment. Similar metabolic wiring in other pathogenic Enterobacteriaceae may suggest a broadly conserved mechanism for gut colonization.
Assuntos
Fermentação , Salmonella typhimurium , Animais , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Camundongos , Trato Gastrointestinal/microbiologia , Ciclo do Ácido Cítrico , Camundongos Endogâmicos C57BL , Acetatos/metabolismo , Elementos de DNA Transponíveis , Vida Livre de Germes , Microbioma Gastrointestinal/fisiologia , Etanol/metabolismo , Gluconeogênese , Fumaratos/metabolismo , MutagêneseRESUMO
microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.
Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Humanos , Metabolômica/métodos , Bases de Dados FactuaisRESUMO
Algal blooms are hotspots of marine primary production and play central roles in microbial ecology and global elemental cycling. Upon demise of the bloom, organic carbon is partly respired and partly transferred to either higher trophic levels, bacterial biomass production or sinking. Viral infection can lead to bloom termination, but its impact on the fate of carbon remains largely unquantified. Here, we characterize the interplay between viral infection and the composition of a bloom-associated microbiome and consequently the evolving biogeochemical landscape, by conducting a large-scale mesocosm experiment where we monitor seven induced coccolithophore blooms. The blooms show different degrees of viral infection and reveal that only high levels of viral infection are followed by significant shifts in the composition of free-living bacterial and eukaryotic assemblages. Intriguingly, upon viral infection the biomass of eukaryotic heterotrophs (thraustochytrids) rivals that of bacteria as potential recyclers of organic matter. By combining modeling and quantification of active viral infection at a single-cell resolution, we estimate that viral infection causes a 2-4 fold increase in per-cell rates of extracellular carbon release in the form of acidic polysaccharides and particulate inorganic carbon, two major contributors to carbon sinking into the deep ocean. These results reveal the impact of viral infection on the fate of carbon through microbial recyclers of organic matter in large-scale coccolithophore blooms.
Assuntos
Eucariotos , Viroses , Humanos , Células Eucarióticas , Bactérias , CarbonoRESUMO
The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While many bacteria are chemotactic towards small metabolites, marine organic matter is predominantly composed of large molecules and polymers. Yet, the signalling role of these large molecules is largely unknown. Using in situ and laboratory-based chemotaxis assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharides laminarin and alginate. Unexpectedly, these polysaccharides elicited stronger chemoattraction than their oligo- and monosaccharide constituents. Furthermore, chemotaxis towards laminarin was strongly enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. We demonstrate that marine bacteria are capable of strong chemotaxis towards large soluble polysaccharides and uncover a new ecological role for DMSP in enhancing this attraction. These navigation behaviours may contribute to the rapid turnover of polymers in the ocean, with important consequences for marine carbon cycling.
Assuntos
Quimiotaxia , Compostos de Sulfônio , Quimiotaxia/fisiologia , Ecossistema , Compostos de Enxofre/metabolismo , Compostos de Sulfônio/metabolismo , Bactérias/metabolismo , Polissacarídeos/metabolismo , Polímeros/metabolismoRESUMO
MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.
RESUMO
Microbes have the unique ability to break down the complex polysaccharides that make up the bulk of organic matter, initiating a cascade of events that leads to their recycling. Traditionally, the rate of organic matter degradation is perceived to be limited by the chemical and physical structure of polymers. Recent advances in microbial ecology, however, suggest that polysaccharide persistence can result from non-linear growth dynamics created by the coexistence of alternate degradation strategies, metabolic roles as well as by ecological interactions between microbes. This complex "landscape" of degradation strategies and interspecific interactions present in natural microbial communities appears to be far from evolutionarily stable, as frequent gene gain and loss reshape enzymatic repertoires and metabolic roles. In this perspective, we discuss six challenges at the heart of this problem, ranging from the evolution of genetic repertoires, phenotypic heterogeneity in clonal populations, the development of a trait-based ecology, and the impact of metabolic interactions and microbial cooperation on degradation rates. We aim to reframe some of the key questions in the study of polysaccharide-bacteria interactions in the context of eco-evolutionary dynamics, highlighting possible research directions that, if pursued, would advance our understanding of polysaccharide degraders at the interface between biochemistry, ecology and evolution.
RESUMO
Algal blooms produce large quantities of organic matter that is subsequently remineralised by bacterial heterotrophs. Polysaccharide is a primary component of algal biomass. It has been hypothesised that individual bacterial heterotrophic niches during algal blooms are in part determined by the available polysaccharide substrates present. Measurement of the expression of TonB-dependent transporters, often specific for polysaccharide uptake, might serve as a proxy for assessing bacterial polysaccharide consumption over time. To investigate this, we present here high-resolution metaproteomic and metagenomic datasets from bacterioplankton of the 2016 spring phytoplankton bloom at Helgoland island in the southern North Sea, and expression profiles of TonB-dependent transporters during the bloom, which demonstrate the importance of both the Gammaproteobacteria and the Bacteroidetes as degraders of algal polysaccharide. TonB-dependent transporters were the most highly expressed protein class, split approximately evenly between the Gammaproteobacteria and Bacteroidetes, and totalling on average 16.7% of all detected proteins during the bloom. About 93% of these were predicted to take up organic matter, and for about 12% of the TonB-dependent transporters, we predicted a specific target polysaccharide class. Most significantly, we observed a change in substrate specificities of the expressed transporters over time, which was not reflected in the corresponding metagenomic data. From this, we conclude that algal cell wall-related compounds containing fucose, mannose, and xylose were mostly utilised in later bloom stages, whereas glucose-based algal and bacterial storage molecules including laminarin, glycogen, and starch were used throughout. Quantification of transporters could therefore be key for understanding marine carbon cycling.
Assuntos
Fitoplâncton , Água do Mar , Eutrofização , Mar do Norte , Fitoplâncton/genética , Polissacarídeos BacterianosRESUMO
The formation of sinking particles in the ocean, which promote carbon sequestration into deeper water and sediments, involves algal polysaccharides acting as an adhesive, binding together molecules, cells and minerals. These as yet unidentified adhesive polysaccharides must resist degradation by bacterial enzymes or else they dissolve and particles disassemble before exporting carbon. Here, using monoclonal antibodies as analytical tools, we trace the abundance of 27 polysaccharide epitopes in dissolved and particulate organic matter during a series of diatom blooms in the North Sea, and discover a fucose-containing sulphated polysaccharide (FCSP) that resists enzymatic degradation, accumulates and aggregates. Previously only known as a macroalgal polysaccharide, we find FCSP to be secreted by several globally abundant diatom species including the genera Chaetoceros and Thalassiosira. These findings provide evidence for a novel polysaccharide candidate to contribute to carbon sequestration in the ocean.
Assuntos
Carbono/metabolismo , Diatomáceas/metabolismo , Eutrofização/fisiologia , Polissacarídeos/metabolismo , Anticorpos , Ciclo do Carbono , Sequestro de Carbono , Epitopos , Glicômica , Mar do Norte , Polissacarídeos/imunologia , Água do Mar/químicaRESUMO
We revisit the method of conformal mapping and apply it to the setting found in mechanosensory detection systems such as the lateral-line system of fish. We derive easy-to-use equations capable of describing analytically the influence of the stimulus shape on the flow field and thus on the input to the lateral line. The present approach shows that the shape of a submerged moving object affects its perception if its distance to a detecting animal does not exceed the object's body length.
Assuntos
Sistema da Linha Lateral/fisiologia , Mecanorreceptores/fisiologia , Modelos Neurológicos , Propriocepção/fisiologia , Animais , Peixes , MatemáticaRESUMO
In the struggle for survival in a complex and dynamic environment, nature has developed a multitude of sophisticated sensory systems. In order to exploit the information provided by these sensory systems, higher vertebrates reconstruct the spatio-temporal environment from each of the sensory systems they have at their disposal. That is, for each modality the animal computes a neuronal representation of the outside world, a monosensory neuronal map. Here we present a universal framework that allows to calculate the specific layout of the involved neuronal network by means of a general mathematical principle, viz., stochastic optimality. In order to illustrate the use of this theoretical framework, we provide a step-by-step tutorial of how to apply our model. In so doing, we present a spatial and a temporal example of optimal stimulus reconstruction which underline the advantages of our approach. That is, given a known physical signal transmission and rudimental knowledge of the detection process, our approach allows to estimate the possible performance and to predict neuronal properties of biological sensory systems. Finally, information from different sensory modalities has to be integrated so as to gain a unified perception of reality for further processing, e.g., for distinct motor commands. We briefly discuss concepts of multimodal interaction and how a multimodal space can evolve by alignment of monosensory maps.
Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cognição/fisiologia , Cibernética/métodos , Redes Neurais de Computação , Orientação/fisiologia , Percepção/fisiologia , Sensação/fisiologia , Animais , HumanosRESUMO
Brown algae are important players in the global carbon cycle by fixing carbon dioxide into 1 Gt of biomass annually, yet the fate of fucoidan-their major cell wall polysaccharide-remains poorly understood. Microbial degradation of fucoidans is slower than that of other polysaccharides, suggesting that fucoidans are more recalcitrant and may sequester carbon in the ocean. This may be due to the complex, branched and highly sulfated structure of fucoidans, which also varies among species of brown algae. Here, we show that 'Lentimonas' sp. CC4, belonging to the Verrucomicrobia, acquired a remarkably complex machinery for the degradation of six different fucoidans. The strain accumulated 284 putative fucoidanases, including glycoside hydrolases, sulfatases and carbohydrate esterases, which are primarily located on a 0.89-megabase pair plasmid. Proteomics reveals that these enzymes assemble into substrate-specific pathways requiring about 100 enzymes per fucoidan from different species of brown algae. These enzymes depolymerize fucoidan into fucose, which is metabolized in a proteome-costly bacterial microcompartment that spatially constrains the metabolism of the toxic intermediate lactaldehyde. Marine metagenomes and microbial genomes show that Verrucomicrobia including 'Lentimonas' are abundant and highly specialized degraders of fucoidans and other complex polysaccharides. Overall, the complexity of the pathways underscores why fucoidans are probably recalcitrant and more slowly degraded, since only highly specialized organisms can effectively degrade them in the ocean.
Assuntos
Phaeophyceae/metabolismo , Polissacarídeos/metabolismo , Verrucomicrobia/enzimologia , Verrucomicrobia/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Esterases , Genes Bacterianos/genética , Glicosídeo Hidrolases , Redes e Vias Metabólicas , Metagenoma , Filogenia , Proteoma , Especificidade por Substrato , Sulfatases , Sulfatos/metabolismo , Transcriptoma , Estados Unidos , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificaçãoRESUMO
Cold marine sediments harbor endospores of fermentative and sulfate-reducing, thermophilic bacteria. These dormant populations of endospores are believed to accumulate in the seabed via passive dispersal by ocean currents followed by sedimentation from the water column. However, the magnitude of this process is poorly understood because the endospores present in seawater were so far not identified, and only the abundance of thermophilic sulfate-reducing endospores in the seabed has been quantified. We investigated the distribution of thermophilic fermentative endospores (TFEs) in water column and sediment of Aarhus Bay, Denmark, to test the role of suspended dispersal and determine the rate of endospore deposition and the endospore abundance in the sediment. We furthermore aimed to determine the time course of reactivation of the germinating TFEs. TFEs were induced to germinate and grow by incubating pasteurized sediment and water samples anaerobically at 50°C. We observed a sudden release of the endospore component dipicolinic acid immediately upon incubation suggesting fast endospore reactivation in response to heating. Volatile fatty acids (VFAs) and H2 began to accumulate exponentially after 3.5 h of incubation showing that reactivation was followed by a short phase of outgrowth before germinated cells began to divide. Thermophilic fermenters were mainly present in the sediment as endospores because the rate of VFA accumulation was identical in pasteurized and non-pasteurized samples. Germinating TFEs were identified taxonomically by reverse transcription, PCR amplification and sequencing of 16S rRNA. The water column and sediment shared the same phylotypes, thereby confirming the potential for seawater dispersal. The abundance of TFEs was estimated by most probable number enumeration, rates of VFA production, and released amounts of dipicolinic acid during germination. The surface sediment contained â¼105-106 inducible TFEs cm-3. TFEs thus outnumber thermophilic sulfate-reducing endospores by an order of magnitude. The abundance of cultivable TFEs decreased exponentially with sediment depth with a half-life of 350 years. We estimate that 6 × 109 anaerobic thermophilic endospores are deposited on the seafloor per m2 per year in Aarhus Bay, and that these thermophiles represent >10% of the total endospore community in the surface sediment.
RESUMO
The lateral-line system is a unique mechanosensory facility of aquatic animals that enables them not only to localize prey, predator, obstacles, and conspecifics, but also to recognize hydrodynamic objects. Here we present an explicit model explaining how aquatic animals such as fish can distinguish differently shaped submerged moving objects. Our model is based on the hydrodynamic multipole expansion and uses the unambiguous set of multipole components to identify the corresponding object. Furthermore, we show that within the natural range of one fish length the velocity field contains far more information than that due to a dipole. Finally, the model we present is easy to implement both neuronally and technically, and agrees well with available neuronal, physiological, and behavioral data on the lateral-line system.
Assuntos
Peixes/fisiologia , Sistema da Linha Lateral/fisiologia , Modelos Biológicos , Animais , Peixes/anatomia & histologia , Sistema da Linha Lateral/anatomia & histologia , MovimentoRESUMO
Two groups of snakes possess an infrared detection system that is used to create a heat image of their environment. In this Letter we present an explicit reconstruction model, the "virtual lens," which explains how a snake can overcome the optical limitations of a wide aperture pinhole camera, and how ensuing properties of the receptive fields on the infrared-sensitive membrane may explain the behavioral performance of this sensory system. Our model explores the optical quality of the infrared system by detailing how a functional representation of the thermal properties of the environment can be created. The model is easy to implement neuronally and agrees well with available neuronal, physiological, and behavioral data on the snake infrared system.
Assuntos
Temperatura Alta , Modelos Biológicos , Órgãos dos Sentidos/fisiologia , Órgãos dos Sentidos/efeitos da radiação , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/efeitos da radiação , Viperidae/fisiologia , Animais , Simulação por Computador , Relação Dose-Resposta à Radiação , TemperaturaRESUMO
The lateral-line system is a unique facility of aquatic animals to locate predator, prey, or conspecifics. We present a detailed model of how the clawed frog Xenopus, or fish, can localize submerged moving objects in three dimensions by using their lateral-line system. In so doing we develop two models of a slightly different nature. First, we exploit the characteristic properties of the velocity field, such as zeros and maxima or minima, that a moving object generates at the lateral-line organs and that are directly accessible neuronally, in the context of a simplified geometry. In addition, we show that the associated neuronal model is robust with respect to noise. Though we focus on the superficial neuromasts of Xenopus the same arguments apply mutatis mutandis to the canal lateral-line system of fish. Second, we present a full-blown three-dimensional reconstruction of the source on the basis of a maximum likelihood argument.