RESUMO
Pathogenic variants in the UBQLN2 gene cause X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia characterized by ubiquilin 2 aggregates in neurons of the motor cortex, hippocampus and spinal cord. However, ubiquilin 2 neuropathology is also seen in sporadic and familial amyotrophic lateral sclerosis and/or frontotemporal dementia cases not caused by UBQLN2 pathogenic variants, particularly C9orf72-linked cases. This makes the mechanistic role of mutant ubiquilin 2 protein and the value of ubiquilin 2 pathology for predicting genotype unclear. Here we examine a cohort of 44 genotypically diverse amyotrophic lateral sclerosis cases with or without frontotemporal dementia, including eight cases with UBQLN2 variants [resulting in p.S222G, p.P497H, p.P506S, p.T487I (two cases) and p.P497L (three cases)]. Using multiplexed (five-label) fluorescent immunohistochemistry, we mapped the co-localization of ubiquilin 2 with phosphorylated TDP-43, dipeptide repeat aggregates and p62 in the hippocampus of controls (n = 6), or amyotrophic lateral sclerosis with or without frontotemporal dementia in sporadic (n = 20), unknown familial (n = 3), SOD1-linked (n = 1), FUS-linked (n = 1), C9orf72-linked (n = 5) and UBQLN2-linked (n = 8) cases. We differentiate between (i) ubiquilin 2 aggregation together with phosphorylated TDP-43 or dipeptide repeat proteins; and (ii) ubiquilin 2 self-aggregation promoted by UBQLN2 pathogenic variants that cause amyotrophic lateral sclerosis and/or frontotemporal dementia. Overall, we describe a hippocampal protein aggregation signature that fully distinguishes mutant from wild-type ubiquilin 2 in amyotrophic lateral sclerosis with or without frontotemporal dementia, whereby mutant ubiquilin 2 is more prone than wild-type to aggregate independently of driving factors. This neuropathological signature can be used to assess the pathogenicity of UBQLN2 gene variants and to understand the mechanisms of UBQLN2-linked disease.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica , Proteínas Relacionadas à Autofagia , Demência Frontotemporal , Hipocampo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Humanos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Hipocampo/patologia , Hipocampo/metabolismo , Masculino , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pessoa de Meia-Idade , Feminino , Idoso , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Adulto , Proteína C9orf72/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismoRESUMO
JAG2 encodes the Notch ligand Jagged2. The conserved Notch signaling pathway contributes to the development and homeostasis of multiple tissues, including skeletal muscle. We studied an international cohort of 23 individuals with genetically unsolved muscular dystrophy from 13 unrelated families. Whole-exome sequencing identified rare homozygous or compound heterozygous JAG2 variants in all 13 families. The identified bi-allelic variants include 10 missense variants that disrupt highly conserved amino acids, a nonsense variant, two frameshift variants, an in-frame deletion, and a microdeletion encompassing JAG2. Onset of muscle weakness occurred from infancy to young adulthood. Serum creatine kinase (CK) levels were normal or mildly elevated. Muscle histology was primarily dystrophic. MRI of the lower extremities revealed a distinct, slightly asymmetric pattern of muscle involvement with cores of preserved and affected muscles in quadriceps and tibialis anterior, in some cases resembling patterns seen in POGLUT1-associated muscular dystrophy. Transcriptome analysis of muscle tissue from two participants suggested misregulation of genes involved in myogenesis, including PAX7. In complementary studies, Jag2 downregulation in murine myoblasts led to downregulation of multiple components of the Notch pathway, including Megf10. Investigations in Drosophila suggested an interaction between Serrate and Drpr, the fly orthologs of JAG1/JAG2 and MEGF10, respectively. In silico analysis predicted that many Jagged2 missense variants are associated with structural changes and protein misfolding. In summary, we describe a muscular dystrophy associated with pathogenic variants in JAG2 and evidence suggests a disease mechanism related to Notch pathway dysfunction.
Assuntos
Proteína Jagged-2/genética , Distrofias Musculares/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Linhagem Celular , Criança , Pré-Escolar , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Glucosiltransferases/genética , Haplótipos/genética , Humanos , Proteína Jagged-1/genética , Proteína Jagged-2/química , Proteína Jagged-2/deficiência , Proteína Jagged-2/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Músculos/metabolismo , Músculos/patologia , Distrofias Musculares/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Linhagem , Fenótipo , Receptores Notch/metabolismo , Transdução de Sinais , Sequenciamento do Exoma , Adulto JovemRESUMO
Mutations in UBQLN2 cause amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neurodegenerations. However, the mechanism by which the UBQLN2 mutations cause disease remains unclear. Alterations in proteins involved in autophagy are prominent in neuronal tissue of human ALS UBQLN2 patients and in a transgenic P497S UBQLN2 mouse model of ALS/FTD, suggesting a pathogenic link. Here, we show UBQLN2 functions in autophagy and that ALS/FTD mutant proteins compromise this function. Inactivation of UBQLN2 expression in HeLa cells reduced autophagic flux and autophagosome acidification. The defect in acidification was rescued by reexpression of wild type (WT) UBQLN2 but not by any of the five different UBQLN2 ALS/FTD mutants tested. Proteomic analysis and immunoblot studies revealed P497S mutant mice and UBQLN2 knockout HeLa and NSC34 cells have reduced expression of ATP6v1g1, a critical subunit of the vacuolar ATPase (V-ATPase) pump. Knockout of UBQLN2 expression in HeLa cells decreased turnover of ATP6v1g1, while overexpression of WT UBQLN2 increased biogenesis of ATP6v1g1 compared with P497S mutant UBQLN2 protein. In vitro interaction studies showed that ATP6v1g1 binds more strongly to WT UBQLN2 than to ALS/FTD mutant UBQLN2 proteins. Intriguingly, overexpression of ATP6v1g1 in UBQLN2 knockout HeLa cells increased autophagosome acidification, suggesting a therapeutic approach to overcome the acidification defect. Taken together, our findings suggest that UBQLN2 mutations drive pathogenesis through a dominant-negative loss-of-function mechanism in autophagy and that UBQLN2 functions as an important regulator of the expression and stability of ATP6v1g1. These findings may have important implications for devising therapies to treat UBQLN2-linked ALS/FTD.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/genética , Autofagossomos/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/genética , Demência/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Relacionadas à Autofagia/genética , Biomarcadores/metabolismo , Linhagem Celular , Demência/metabolismo , Demência/patologia , Predisposição Genética para Doença , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Ligação Proteica , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Regulação para Cima , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismoRESUMO
TMEM230 is a newly identified Parkinson's disease (PD) gene encoding a transmembrane protein whose cellular and pathogenic roles remain largely unknown. Here, we demonstrate that loss of TMEM230 disrupts retromer cargo CI-M6PR (cation-independent mannose 6-phosphate receptor) trafficking and autophagic cargo degradation rates. TMEM230 depletion further inhibits extracellular secretion of the autophagic cargo p62 and immature lysosomal hydrolases in Golgi-derived vesicles leading to their intracellular accumulation, and is specifically mediated by loss of the small GTPase Rab8a. Importantly, PD-linked TMEM230 variants also induce retromer mislocalization, defective cargo trafficking, and impaired autophagy. Finally, we show that knockdown of another PD gene, LRRK2, which phosphorylates Rab8a, similarly impairs retromer trafficking, secretory autophagy and Golgi-derived vesicle secretion, thus demonstrating converging roles of two PD genes TMEM230 and LRRK2 on Rab8a function, and suggesting that retromer and secretory dysfunction play an important role in PD pathogenesis.
Assuntos
Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Doença de Parkinson/metabolismo , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células COS , Chlorocebus aethiops , Complexo de Golgi/genética , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas de Membrana/genética , Doença de Parkinson/genética , Fosforilação/genética , Vesículas Secretórias/genética , Extratos do Timo , Proteínas rab de Ligação ao GTP/genéticaRESUMO
IMPORTANCE: Understanding the natural history of familial amyotrophic lateral sclerosis (ALS) caused by SOD1 mutations (ALSSOD1) will provide key information for optimising clinical trials in this patient population. OBJECTIVE: To establish an updated natural history of ALSSOD1. DESIGN, SETTING AND PARTICIPANTS: Retrospective cohort study from 15 medical centres in North America evaluated records from 175 patients with ALS with genetically confirmed SOD1 mutations, cared for after the year 2000. MAIN OUTCOMES AND MEASURES: Age of onset, survival, ALS Functional Rating Scale (ALS-FRS) scores and respiratory function were analysed. Patients with the A4V (Ala-Val) SOD1 mutation (SOD1A4V), the largest mutation population in North America with an aggressive disease progression, were distinguished from other SOD1 mutation patients (SOD1non-A4V) for analysis. RESULTS: Mean age of disease onset was 49.7±12.3â years (mean±SD) for all SOD1 patients, with no statistical significance between SOD1A4V and SOD1non-A4V (p=0.72, Kruskal-Wallis). Total SOD1 patient median survival was 2.7â years. Mean disease duration for all SOD1 was 4.6±6.0 and 1.4±0.7â years for SOD1A4V. SOD1A4V survival probability (median survival 1.2â years) was significantly decreased compared with SOD1non-A4V (median survival 6.8â years; p<0.0001, log-rank). A statistically significant increase in ALS-FRS decline in SOD1A4V compared with SOD1non-A4V participants (p=0.02) was observed, as well as a statistically significant increase in ALS-forced vital capacity decline in SOD1A4V compared with SOD1non-A4V (p=0.02). CONCLUSIONS AND RELEVANCE: SOD1A4V is an aggressive, but relatively homogeneous form of ALS. These SOD1-specific ALS natural history data will be important for the design and implementation of clinical trials in the ALSSOD1 patient population.
Assuntos
Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/patologia , Ensaios Clínicos como Assunto , Projetos de Pesquisa , Superóxido Dismutase/genética , Adulto , Idade de Início , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Progressão da Doença , Humanos , Pessoa de Meia-Idade , Mutação , Estudos Retrospectivos , Capacidade Vital/fisiologiaRESUMO
Amyotrophic lateral sclerosis (ALS) is a paralytic and usually fatal disorder caused by motor-neuron degeneration in the brain and spinal cord. Most cases of ALS are sporadic but about 5-10% are familial. Mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein (TARDBP, also known as TDP43) and fused in sarcoma (FUS, also known as translocated in liposarcoma (TLS)) account for approximately 30% of classic familial ALS. Mutations in several other genes have also been reported as rare causes of ALS or ALS-like syndromes. The causes of the remaining cases of familial ALS and of the vast majority of sporadic ALS are unknown. Despite extensive studies of previously identified ALS-causing genes, the pathogenic mechanism underlying motor-neuron degeneration in ALS remains largely obscure. Dementia, usually of the frontotemporal lobar type, may occur in some ALS cases. It is unclear whether ALS and dementia share common aetiology and pathogenesis in ALS/dementia. Here we show that mutations in UBQLN2, which encodes the ubiquitin-like protein ubiquilin 2, cause dominantly inherited, chromosome-X-linked ALS and ALS/dementia. We describe novel ubiquilin 2 pathology in the spinal cords of ALS cases and in the brains of ALS/dementia cases with or without UBQLN2 mutations. Ubiquilin 2 is a member of the ubiquilin family, which regulates the degradation of ubiquitinated proteins. Functional analysis showed that mutations in UBQLN2 lead to an impairment of protein degradation. Therefore, our findings link abnormalities in ubiquilin 2 to defects in the protein degradation pathway, abnormal protein aggregation and neurodegeneration, indicating a common pathogenic mechanism that can be exploited for therapeutic intervention.
Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ciclo Celular/genética , Demência/complicações , Demência/genética , Genes Dominantes/genética , Genes Ligados ao Cromossomo X/genética , Mutação/genética , Ubiquitinas/genética , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Idade de Início , Envelhecimento , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/patologia , Proteínas Relacionadas à Autofagia , Sequência de Bases , Proteínas de Ciclo Celular/análise , Linhagem Celular , Criança , Proteínas de Ligação a DNA/metabolismo , Demência/patologia , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Complexo de Endopeptidases do Proteassoma/metabolismo , Medula Espinal/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/análiseRESUMO
Mutations in the gene encoding ubiquilin2 (UBQLN2) cause amyotrophic lateral sclerosis (ALS), frontotemporal type of dementia, or both. However, the molecular mechanisms are unknown. Here, we show that ALS/dementia-linked UBQLN2(P497H) transgenic mice develop neuronal pathology with ubiquilin2/ubiquitin/p62-positive inclusions in the brain, especially in the hippocampus, recapitulating several key pathological features of dementia observed in human patients with UBQLN2 mutations. A major feature of the ubiquilin2-related pathology in these mice, and reminiscent of human disease, is a dendritic spinopathy with protein aggregation in the dendritic spines and an associated decrease in dendritic spine density and synaptic dysfunction. Finally, we show that the protein inclusions in the dendritic spines are composed of several components of the proteasome machinery, including Ub(G76V)-GFP, a representative ubiquitinated protein substrate that is accumulated in the transgenic mice. Our data, therefore, directly link impaired protein degradation to inclusion formation that is associated with synaptic dysfunction and cognitive deficits. These data imply a convergent molecular pathway involving synaptic protein recycling that may also be involved in other neurodegenerative disorders, with implications for development of widely applicable rational therapeutics.
Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ciclo Celular/genética , Demência/genética , Mutação , Ubiquitinas/genética , Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Proteínas Relacionadas à Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ciclo Celular/metabolismo , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Demência/metabolismo , Demência/fisiopatologia , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Imuno-Histoquímica , Corpos de Inclusão/metabolismo , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Atividade Motora/genética , Atividade Motora/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Ubiquitinas/metabolismoRESUMO
Genetic discoveries in ALS have a significant impact on deciphering molecular mechanisms of motor neuron degeneration. The identification of SOD1 as the first genetic cause of ALS led to the engineering of the SOD1 mouse, the backbone of ALS research, and set the stage for future genetic breakthroughs. In addition, careful analysis of ALS pathology added valuable pieces to the ALS puzzle. From this joint effort, major pathogenic pathways emerged. Whereas the study of TDP43, FUS and C9ORF72 pointed to the possible involvement of RNA biology in motor neuron survival, recent work on P62 and UBQLN2 refocused research on protein degradation pathways. Despite all these efforts, the etiology of most cases of sporadic ALS remains elusive. Newly acquired genomic tools now allow the identification of genetic and epigenetic factors that can either increase ALS risk or modulate disease phenotype. These developments will certainly allow for better disease modeling to identify novel therapeutic targets for ALS. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Assuntos
Esclerose Lateral Amiotrófica , Doenças Genéticas Inatas , Neurônios Motores , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Relacionadas à Autofagia , Proteína C9orf72 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Humanos , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteínas/genética , Proteínas/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Ubiquitinas/genética , Ubiquitinas/metabolismoRESUMO
Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or nuclear genome. Only 5% of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of the previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established chromosome 22 open reading frame 16 (C22orf16) (later designated as CHCHD10) as the only high-scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double-missense mutation (R15S and G58R) in cis in CHCHD10 which encodes a coiled coil-helix-coiled coil-helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1,481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that the expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria.
Assuntos
Miopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação , Cromossomos Humanos Par 22 , Família , Feminino , Genes Dominantes , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Porto RicoRESUMO
The etiopathogenesis of neither the sporadic form of Alzheimer disease (AD) nor of amyotrophic lateral sclerosis (ALS) is well understood. The activity of protein phosphatase-2A (PP2A), which regulates the phosphorylation of tau and neurofilaments, is negatively regulated by the myeloid leukemia-associated protein SET, also known as inhibitor-2 of PP2A, I2(PP2A). In AD brain, PP2A activity is compromised, probably because I2(PP2A) is overexpressed and is selectively cleaved at asparagine 175 into an N-terminal fragment, I2NTF, and a C-terminal fragment, I2CTF, and both fragments inhibit PP2A. Here, we analyzed the spinal cords from ALS and control cases for I2(PP2A) cleavage and PP2A activity. As observed in AD brain, we found a selective increase in the cleavage of I2(PP2A) into I2NTF and I2CTF and inhibition of the activity and not the expression of PP2A in the spinal cords of ALS cases. To test the hypothesis that both AD and ALS could be triggered by I2CTF, a cleavage product of I2(PP2A), we transduced by intracerebroventricular injections newborn rats with adeno-associated virus serotype 1 (AAV1) containing human I2CTF. AAV1-I2CTF produced reference memory impairment and tau pathology, and intraneuronal accumulation of Aß by 5-8 months, and motor deficit and hyperphosphorylation and proliferation of neurofilaments, tau and TDP-43 pathologies, degeneration and loss of motor neurons and axons in the spinal cord by 10-14 months in rats. These findings suggest a previously undiscovered etiopathogenic relationship between sporadic forms of AD and ALS that is linked to I2(PP2A) and the potential of I2(PP2A)-based therapeutics for these diseases.
Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/patologia , Proteína Fosfatase 2/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Proteínas de Ligação a DNA , Dependovirus/genética , Modelos Animais de Doenças , Chaperonas de Histonas/metabolismo , Humanos , Fosforilação , Ratos , Ratos Wistar , Medula Espinal/metabolismo , Medula Espinal/patologia , Fatores de Transcrição/metabolismo , Transdução GenéticaRESUMO
The treatment of neurodegenerative diseases is difficult because of multiple etiologies and the interplay of genetics and environment as precipitating factors. In the case of amyotrophic lateral sclerosis (ALS), we have knowledge of a handful of genes that cause disease when mutated. However, drugs to counteract the effect of genetic mutations have not yet been found. One of the causative genes, Cu, Zn-superoxide dismutase (SOD1) is responsible for about 10-15% of the genetically linked autosomal dominant disease. Our rationale was that compounds that reduce expression of the mutant protein would be beneficial to slow onset and/or disease progression. We screened candidate compounds using a cell-based in vitro assay for those that reduce mutant SOD1 (G93A) protein expression. This led to the discovery of 2-[3-iodophenyl)methylsulfanyl]-5pyridin-4-yl-1,3,4-oxadiazole, a known protein kinase inhibitor that decreases G93A-SOD1 expression in vitro and in the brain and spinal cord in vivo. However, this compound has a biphasic dose response curve and a likely toxophore which limit its therapeutic window for chronic disease such as ALS. Therefore, we designed and tested a focused library of analogs for their ability to decrease SOD1 expression in vitro. This exercise resulted in the identification of a lead compound with improved drug-like characteristics and activity. Development of small molecules that reduce the expression of etiologically relevant toxic proteins is a strategy that may also be extended to familial ALS linked to gain of function mutations in other genes.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Oxidiazóis/química , Oxidiazóis/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Superóxido Dismutase/metabolismo , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Camundongos , Oxidiazóis/síntese química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Superóxido Dismutase/antagonistas & inibidoresRESUMO
Mutations in TRPV4 have been linked to three distinct axonal neuropathies. However, the pathogenic mechanism underlying these disorders remains unclear. Both gain and loss of calcium channel activity of the mutant TRPV4 have been suggested. Here, we show that the three previously reported TRPV4 mutant channels have a physiological localization and display an increased calcium channel activity, leading to increased cytotoxicity in three different cell types. Patch clamp experiments showed that cells expressing mutant TRPV4 have much larger whole-cell currents than those expressing the wild-type TRPV4 channel. Single channel recordings showed that the mutant channels have higher open probability, due to a modification of gating, and no change in single-channel conductance. These data support the hypothesis that a "gain of function" mechanism, possibly leading to increased intracellular calcium influx, underlies the pathogenesis of the TRPV4-linked axonal neuropathies, and may have immediate implications for designing rational therapies.
Assuntos
Axônios/metabolismo , Mutação , Doenças Neurodegenerativas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Canais de Cálcio/química , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular , Citoplasma/metabolismo , DNA Complementar/metabolismo , Eletrofisiologia/métodos , Células HeLa , Humanos , Microscopia Confocal/métodos , Modelos Biológicos , Modelos Estatísticos , Proteínas Nucleares/metabolismo , Canais de Potencial de Receptor Transitório/metabolismoRESUMO
Recent findings highlight a pathologic and functional convergence in amyotrophic lateral sclerosis (ALS) and amyotrophic lateral sclerosis with frontotemporal dementia (ALS-FTD) at the level of protein recycling and disposal. Genes linked to rare cases of familial ALS and ALS-FTD, like UBQLN2, OPTN, SQSTM1/p62, and VCP, may converge onto a unifying pathogenic pathway and thereby provide novel therapeutic targets common to a spectrum of etiologically diverse forms of ALS and ALS-FTD. Interactions between these genes need to be further explored to understand their common molecular pathways. Future efforts should be directed toward generation and characterization of in vivo models to dissect the pathogenic mechanisms of ALS and ALS-FTD and the role of protein degradation pathways, both centrally, at the cell body, and peripherally, at the level of the synapse. Such efforts will rapidly accelerate the discovery of new drugs that regulate accumulation of pathogenic proteins and their downstream consequences in ALS and ALS-FTD and, possibly, other neurodegenerative diseases as well.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ciclo Celular/metabolismo , Demência Frontotemporal/metabolismo , Ubiquitinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Relacionadas à Autofagia , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Proteína Sequestossoma-1 , Ubiquitinas/genéticaRESUMO
Superoxide dismutase (SOD1) gene variants may cause amyotrophic lateral sclerosis, some of which are associated with a distinct phenotype. Most studies assess limited variants or sample sizes. In this international, retrospective observational study, we compare phenotypic and demographic characteristics between people with SOD1-ALS and people with ALS and no recorded SOD1 variant. We investigate which variants are associated with age at symptom onset and time from onset to death or censoring using Cox proportional-hazards regression. The SOD1-ALS dataset reports age of onset for 1122 and disease duration for 883 people; the comparator population includes 10,214 and 9010 people respectively. Eight variants are associated with younger age of onset and distinct survival trajectories; a further eight associated with younger onset only and one with distinct survival only. Here we show that onset and survival are decoupled in SOD1-ALS. Future research should characterise rarer variants and molecular mechanisms causing the observed variability.
Assuntos
Esclerose Lateral Amiotrófica , Humanos , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/epidemiologia , Superóxido Dismutase/genética , Fenótipo , MutaçãoRESUMO
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by degeneration of motor neurons and atrophy of skeletal muscle. Mutations in the superoxide dismutase (SOD1) gene are linked to 20% cases of inherited ALS. Mitochondrial dysfunction has been implicated in the pathogenic process, but how it contributes to muscle degeneration of ALS is not known. Here we identify a specific deficit in the cellular physiology of skeletal muscle derived from an ALS mouse model (G93A) with transgenic overexpression of the human SOD1(G93A) mutant. The G93A skeletal muscle fibers display localized loss of mitochondrial inner membrane potential in fiber segments near the neuromuscular junction. These defects occur in young G93A mice prior to disease onset. Fiber segments with depolarized mitochondria show greater osmotic stress-induced Ca(2+) release activity, which can include propagating Ca(2+) waves. These Ca(2+) waves are confined to regions of depolarized mitochondria and stop propagating shortly upon entering the regions of normal, polarized mitochondria. Uncoupling of mitochondrial membrane potential with FCCP or inhibition of mitochondrial Ca(2+) uptake by Ru360 lead to cell-wide propagation of such Ca(2+) release events. Our data reveal that mitochondria regulate Ca(2+) signaling in skeletal muscle, and loss of this capacity may contribute to the progression of muscle atrophy in ALS.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Sinalização do Cálcio , Espaço Intracelular/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Modelos Animais de Doenças , Espaço Intracelular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Modelos Biológicos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/ultraestrutura , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Junção Neuromuscular/ultraestrutura , Compostos de Rutênio/farmacologia , Estresse Fisiológico/efeitos dos fármacosRESUMO
Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (FALS), and approximately 25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase type 1 (SOD1). Mutant (MT) SOD1 is thought to be pathogenic because it misfolds and aggregates. A number of transgenic mice have been generated that express different MTSOD1s as transgenes and exhibit an ALS-like disease. Although one study found that overexpression of human wild-type (WT) SOD1 did not affect disease in G85R transgenic mice, more recent reports claim that overexpression of WTSOD1 in other MTSOD1 transgenic mice hastened disease, raising a possibility that the effect of WTSOD1 overexpression in this FALS mouse model is mutant-specific. In order to clarify this issue, we studied the effect of WTSOD1 overexpression in a G85R transgenic mouse that we recently generated. We found that G85R/WTSOD1 double transgenic mice had an acceleration of disease onset and shortened survival compared with G85R single transgenic mice; in addition, there was an earlier appearance of pathological and immunohistochemical abnormalities. The spinal cord insoluble fraction from G85R/WTSOD1 mice had evidence of G85R-WTSOD1 heterodimers and WTSOD1 homodimers (in addition to G85R homodimers) with intermolecular disulfide bond cross-linking. These studies suggest that WTSOD1 can be recruited into disease-associated aggregates by redox processes, providing an explanation for the accelerated disease seen in G85R mice following WTSOD1 overexpression, and suggesting the importance of incorrect disulfide-linked protein as key to MTSOD1 toxicity.
Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Progressão da Doença , Expressão Gênica , Mutação de Sentido Incorreto , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/enzimologia , Animais , Dimerização , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1RESUMO
The hereditary spastic paraplegias (HSPs) are a genetically and clinically heterogeneous group of upper-motor-neuron degenerative diseases characterized by selective axonal loss in the corticospinal tracts and dorsal columns. Although numerous mechanisms involving defective subcellular transportation, mitochondrial malfunction, and increased oxidative stress have been proposed, the pathogenic basis underlying the neuronal loss is unknown. We have performed linkage analysis to refine the extent of the SPG5 disease locus and conducted sequence analysis of the genes located within this region. This identified sequence alterations in the cytochrome P450-7B1 (CYP7B1) associated with this pure form of HSP. In the liver, CYP7B1 offers an alternative pathway for cholesterol degradation and also provides the primary metabolic route for the modification of dehydroepiandrosterone neurosteroids in the brain. These findings provide the first direct evidence of a pivotal role of altered cholesterol metabolism in the pathogenesis of motor-neuron degenerative disease and identify a potential for therapeutic intervention in this form of HSP.
Assuntos
Colesterol/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Homeostase/genética , Paraplegia Espástica Hereditária/genética , Esteroide Hidroxilases/genética , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Família 7 do Citocromo P450 , Humanos , Fígado/metabolismo , Dados de Sequência Molecular , Linhagem , Análise de Sequência de DNA , Paraplegia Espástica Hereditária/metabolismoRESUMO
OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a fatal disorder of motor neuron degeneration. Most cases of ALS are sporadic (SALS), but about 5 to 10% of ALS cases are familial (FALS). Recent studies have shown that mutations in FUS are causal in approximately 4 to 5% of FALS and some apparent SALS cases. The pathogenic mechanism of the mutant FUS-mediated ALS and potential roles of FUS in non-FUS ALS remain to be investigated. METHODS: Immunostaining was performed on postmortem spinal cords from 78 ALS cases, including SALS (n = 52), ALS with dementia (ALS/dementia, n = 10), and FALS (n = 16). In addition, postmortem brains or spinal cords from 22 cases with or without frontotemporal lobar degeneration were also studied. In total, 100 cases were studied. RESULTS: FUS-immunoreactive inclusions were observed in spinal anterior horn neurons in all SALS and FALS cases, except for those with SOD1 mutations. The FUS-containing inclusions were also immunoreactive with antibodies to TDP43, p62, and ubiquitin. A fraction of tested FUS antibodies recognized FUS inclusions, and specific antigen retrieval protocol appeared to be important for detection of the skein-like FUS inclusions. INTERPRETATION: Although mutations in FUS account for only a small fraction of FALS and SALS, our data suggest that FUS protein may be a common component of the cellular inclusions in non-SOD1 ALS and some other neurodegenerative conditions, implying a shared pathogenic pathway underlying SALS, non-SOD1 FALS, ALS/dementia, and related disorders. Our data also indicate that SOD1-linked ALS may have a pathogenic pathway distinct from SALS and other types of FALS.
Assuntos
Esclerose Lateral Amiotrófica/genética , Encéfalo/metabolismo , Saúde da Família , Proteína FUS de Ligação a RNA/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/patologia , Encéfalo/patologia , Linhagem Celular Transformada , Proteínas de Ligação a DNA/metabolismo , Feminino , Degeneração Lobar Frontotemporal/patologia , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Microscopia Confocal/métodos , Mutação , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1 , Transfecção/métodos , Ubiquitina/metabolismoRESUMO
INTRODUCTION: A Gly41Ser mutation in the superoxide dismutase 1 gene (SOD1) has been reported to cause a very rapid course of amyotrophic lateral sclerosis (ALS) in a limited number of Italian patients, but a Gly41Asp mutation results in a more benign course. METHODS: Four members of an African American family with autosomal dominant ALS were evaluated clinically over 12 years. Mutation analysis of SOD1 was done on 1 patient. RESULTS: All patients had a pure lower motor neuron syndrome with onset to death in 9-15 months. A Gly41Ser mutation in SOD1 was established. In silico modeling suggested that this mutation can have a more deleterious effect than a Gly41Asp mutation. CONCLUSION: The more rapid course of ALS with the Gly41Ser SOD1 mutation is confirmed in a distinct ethnic group.