Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 23(1): 121, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344820

RESUMO

BACKGROUND: Breast cancer is the world's most prevalent cancer among women. Microorganisms have been the richest source of antibiotics as well as anticancer drugs. Moricin peptides have shown antibacterial properties; however, the anticancer potential and mechanistic insights into moricin peptide-induced cancer cell death have not yet been explored. METHODS: An investigation through in silico analysis, analytical methods (Reverse Phase-High Performance Liquid Chromatography (RP-HPLC), mass spectroscopy (MS), circular dichroism (CD), and in vitro studies, has been carried out to delineate the mechanism(s) of moricin-induced cancer cell death. An in-silico analysis was performed to predict the anticancer potential of moricin in cancer cells using Anti CP and ACP servers based on a support vector machine (SVM). Molecular docking was performed to predict the binding interaction between moricin and peptide-related cancer signaling pathway(s) through the HawkDOCK web server. Further, in vitro anticancer activity of moricin was performed against MDA-MB-231 cells. RESULTS: In silico observation revealed that moricin is a potential anticancer peptide, and protein-protein docking showed a strong binding interaction between moricin and signaling proteins. CD showed a predominant helical structure of moricin, and the MS result determined the observed molecular weight of moricin is 4544 Da. An in vitro study showed that moricin exposure to MDA-MB-231 cells caused dose dependent inhibition of cell viability with a high generation of reactive oxygen species (ROS). Molecular study revealed that moricin exposure caused downregulation in the expression of Notch-1, NF-ƙB and Bcl2 proteins while upregulating p53, Bax, caspase 3, and caspase 9, which results in caspase-dependent cell death in MDA-MB-231 cells. CONCLUSIONS: In conclusion, this study reveals the anticancer potential and underlying mechanism of moricin peptide-induced cell death in triple negative cancer cells, which could be used in the development of an anticancer drug.

2.
J Med Virol ; 93(9): 5446-5451, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33990973

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become a global health issue and develops into a broad range of illnesses from asymptomatic to fatal respiratory diseases. SARS-CoV-2 infection is associated with oxidative stress that triggers cytokine production, inflammation, and other pathophysiological processes. Glutathione-S-transferase (GST) is an important enzyme that catalyzes the conjugation of glutathione (GSH) with electrophiles to protect the cell from oxidative damage and participates in the antioxidant defense mechanism in the lungs. Thus, in this study, we investigated the role of GSTM1 and GSTT1 gene polymorphism with COVID-19 susceptibility, as well as its outcome. The study included 269 RT-PCR confirmed COVID-19 patients with mild (n = 149) and severe (n = 120) conditions. All subjects were genotyped for GSTM1 and GSTT1 by multiplex polymerase chain reaction (mPCR) followed by statistical analysis. The frequency of GSTM1-/- , GSTT1-/- and GSTM1-/- /GSTT1-/- was higher in severe COVID-19 patients as compared to mild patients but we did not observe a significant association. In the Cox hazard model, death was significantly 2.28-fold higher in patients with the GSTT1-/- genotype (p = 0.047). In combination, patients having GSTM1+/+ and GSTT1-/- genotypes showed a poor survival rate (p = 0.02). Our results suggested that COVID-19 patients with the GSTT1-/- genotype showed higher mortality.


Assuntos
COVID-19/genética , Predisposição Genética para Doença , Glutationa Transferase/genética , Polimorfismo Genético , SARS-CoV-2/patogenicidade , Adulto , Idoso , Alelos , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Feminino , Seguimentos , Expressão Gênica , Frequência do Gene , Glutationa/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Modelos de Riscos Proporcionais , Índice de Gravidade de Doença
3.
Environ Toxicol ; 36(1): 5-15, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32794641

RESUMO

Osteoarthritis (OA) is a chronic degenerative and musculoskeletal disorder. The toxicity associated with nonsteroidal antiinflammatory drugs (NSAIDs) limits its use in the management of OA. To ameliorate these toxicities, natural antioxidants can be used as substitutes for the management of OA. Therefore, this study is aimed to investigate the prophylactic mechanisms of Punica granatum L. peel (PGP) in collagenase-induced OA rat compared with indomethacin. OA was induced in female Sprague Dawley rats by intraarticular injection of collagenase type-II and treated with PGP (250 and 500 mg/kg body wt) and a positive control (PC) indomethacin (3 mg/kg body wt). The results demonstrated that PGP reduced the collagenase induced OA as compared with indomethacin treated group through reducing blood ALP (P < .001) and significantly (P < .001) inhibited cartilage erosion as indicated in histological slides with retention of collagen and proteoglycan content. Quantitative real-time PCR analysis revealed the considerable (P < .05) upregulation in the expression of COL-2 gene and downregulation of MMP-3 and COX-2 genes in the PGP treated group. The high phenolic content (633 ± 1.16 mg/GAE) and flavonoid content (420.3 ± 2.14 mg/RE) contribute to the strong antioxidant activity with IC50 value (320 ± 2.2 µg/mL) of DPPH free radical scavenging activity. These results need further validation in clinical studies and thus, PGP could be developed as a preventive drug treatment for OA.

4.
AAPS PharmSciTech ; 20(2): 87, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30675689

RESUMO

The poorly water-soluble chemotherapeutic agents, paclitaxel (PTX), exhibit serious clinical side effects upon oral administration due to poor aqueous solubility and a high degree of toxic effects due to non-specific distribution to healthy tissues. In our efforts, we formulated biocompatible dietary lipid-based nanostructured lipidic carriers (NLCs) to enhance the oral bioavailability of PTX for treatment of the liver cancer. A three-factor, three-level Box-Behnken design was employed for formulation and optimization of PTX-loaded NLC formulations. PTX-loaded NLC formulation prepared by melt-emulsification in which glyceryl monostearate (GMS) was used as solid lipid and soybean oil as liquid lipid, while poloxamer 188 and Tween 80 (1:1) incorporated as a surfactant. In vitro drug release investigation was executed by dialysis bag approach, which indicated initial burst effect with > 60% drug release within a 4-h time period. Moreover, PTX-NLCs indicated high entrapment (86.48%) and drug loading efficiency (16.54%). In vitro cytotoxicity study of PTX-NLCs performed on HepG2 cell line by MTT assay indicated that PTX-NLCs exhibited comparatively higher cytotoxicity than commercial formulation (Intaxel®). IC50 values of PTX-NLCs and Intaxel® after 24-h exposure were found to be 4.19 µM and 11.2 µM. In vivo pharmacokinetic study in Wistar rats also indicated nearly 6.8-fold improvement in AUC and Cmax of the drug from the PTX-NLCs over the PTX suspension. In a nutshell, the observed results construed significant enhancement in the biopharmaceutical attributes of PTX-NLCs as a potential therapy for the management of human liver carcinoma.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Lipídeos/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Paclitaxel/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Portadores de Fármacos/administração & dosagem , Células Hep G2 , Humanos , Nanoestruturas/administração & dosagem , Ratos , Ratos Wistar
6.
Nutr Cancer ; 69(5): 791-799, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28426244

RESUMO

Piperine is a nitrogenous pungent substance exhibiting multifunctional pharmacological properties. However, the mechanism underlying its anticancer potential is not well elucidated in human oral squamous carcinoma (KB) cell line. The anticancer potential of piperine was evaluated through potent biomarkers viz. reactive oxygen species (ROS), cellular apoptosis, and loss of mitochondrial membrane potential (MMP). In addition, cell cycle kinetics and caspases-3 activity were also carried out to confirm anticancer activity of piperine. Results showed that various concentrations (25-300 µM) of piperine exposure reduced the cell viability of KB cells significantly (P < 0.01). Piperine induced significant (P < 0.01) dose-related increment in ROS production and nuclear condensation. Moreover, piperine stimulated cell death by inducing loss of MMP, and caspase-3 activation. Cell cycle study revealed that piperine arrested the cells in G2/M phase and decreased the DNA content. Findings of this study suggest the efficacy of piperine in inducing cell death via the decrease in MMP and ROS liberation followed by caspase-3 activation and cell cycle arrest. Further assessment of the anticancer potency of piperine is needed for anticancer drug development.


Assuntos
Alcaloides/farmacologia , Apoptose/efeitos dos fármacos , Benzodioxóis/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/patologia , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Células KB , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias Bucais/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Cell Biol Int ; 40(2): 196-203, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26493029

RESUMO

Prostate cancer is the second most common malignancy in the human reproductive system. Eupalitin is one of the O-methylated flavonol-exhibited enhanced cancer chemopreventive agents. The current study highlights the structural determination of eupalitin and aims to explore the antitumor activity of eupalitin in human prostate cancer cell (PC3) and its underlying mechanism. Eupalitin structure was determined by using FTIR, (1)H NMR, and (13)C NMR. PC3 cells were treated with increasing concentrations of eupalitin, followed by analysis of the cell viability with an MTT assay. The results demonstrated that eupalitin markedly inhibited the proliferation of PC3 cells in a concentration-dependent manner. The results from fluorescent microscopic analysis of nuclear condensation and intracellular ROS generation determined that eupalitin significantly induced ROS level lead to nuclear apoptosis. Cell cycle analysis revealed that eupalitin-induced cell cycle progression as a percentage of cells in G0/G1 phase decreased whereas S phase increased. Caspase-3 immunofluorescence analysis confirms the efficacy of eupalitin-inducing apoptotic pathway and cell death. Thus, our study is helpful in understanding the mechanism underlying these effects in prostate cancer and it may provide novel molecular targets for prostate cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Flavonoides/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fase S/efeitos dos fármacos
8.
Chin J Integr Med ; 30(1): 75-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37340205

RESUMO

Good nutrition plays a crucial role in maintaining a balanced lifestyle. The beneficial effects of nutrition have been found to counteract nutritional disturbances with the expanded use of nutraceuticals to treat and manage cardiovascular diseases, cancer, and other developmental defects over the last decade. Flavonoids are found abundantly in plant-derived foods such as fruits, vegetables, tea, cocoa, and wine. Fruits and vegetables contain phytochemicals like flavonoids, phenolics, alkaloids, saponins, and terpenoids. Flavonoids can act as anti-inflammatory, anti-allergic, anti-microbial (antibacterial, antifungal, and antiviral) antioxidant, anti-cancer, and anti-diarrheal agents. Flavonoids are also reported to upregulate apoptotic activity in several cancers such as hepatic, pancreatic, breast, esophageal, and colon. Myricetin is a flavonol which is naturally present in fruits and vegetables and has shown possible nutraceutical value. Myricetin has been portrayed as a potent nutraceutical that may protect against cancer. The focus of the present review is to present an updated account of studies demonstrating the anticancer potential of myricetin and the molecular mechanisms involved therein. A better understanding of the molecular mechanism(s) underlying its anticancer activity would eventually help in its development as a novel anticancer nutraceutical having minimal side effects.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Suplementos Nutricionais , Antioxidantes/farmacologia , Neoplasias/tratamento farmacológico
9.
Artigo em Inglês | MEDLINE | ID: mdl-38994626

RESUMO

BACKGROUND: Oral cancer poses a significant threat to public health worldwide. In addition, because many chemotherapy treatments have negative side effects, natural herbs may be beneficial for oral cancer therapy. Achyranthes aspera (AA), a potential medicinal herb, exerts various pharmacological and biochemical activities. OBJECTIVE: The present study aimed to predict the anti-oral cancer potential of AA using in silico tools and cell death by in vitro testing. METHODS: A total of fourteen bioactive constituents from AA herb were selected using phytochemical databases. The toxicity of AA herb extract was analysed through MTT assay against oral carcinoma A253 cell line. The binding activities of the phytocomponents against serine/ threonine-specific protein kinases isoforms, namely Akt1 (PDB ID: 3qkk) and Akt2 (PDB ID: 2jdo) proteins, were analysed using Discovery Studio 2021 and PyRx docking software. RESULTS: Cell viability data revealed that AA extract decreased the viability and reduced the number of live cells of the oral carcinoma A253 cell line in a dose-dependent manner. The halfmaximal concentration (IC50) value of AA was assessed as 204.74 µg/ml. Based on binding affinity, saponin C (-CDOCKER energy = -77.9862), oleanolic acid (-CDOCKER energy = - 49.4349), spinasterol (-CDOCKER energy = -38.1246), 36,47-dihydroxyhenpentacontan-4-one (-CDOCKER energy = -32.4386), and 20-hydroxyecdysone (-CDOCKER energy = -31.9138) were identified as the best compounds against Akt1, while, compounds saponin C (-CDOCKER energy = -134.412), oleanolic acid (-CDOCKER energy = -90.0846), spinasterol (-CDOCKER energy = -78.3213), 20-hydroxyecdysone (-CDOCKER energy = -80.1049), and ecdysone (- CDOCKER energy = -73.3885) were identified as Akt2 inhibitors. These top compounds fulfilled drug score values, pharmacokinetic and physicochemical characteristics, and druglikeness parameters. CONCLUSION: The present findings reveal that the lead phytomolecules of AA could be effective and developed as a prospective drug against oral cancer.

10.
In Silico Pharmacol ; 12(1): 14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419919

RESUMO

Prevention from disease is presently the cornerstone of the fight against COVID-19. With the rapid emergence of novel SARS-CoV-2 variants, there is an urgent need for novel or repurposed agents to strengthen and fortify the immune system. Existing vaccines induce several systemic and local side-effects that can lead to severe consequences. Moreover, elevated cytokines in COVID-19 patients with cancer as co-morbidity represent a significant bottleneck in disease prognosis and therapy. Withania somnifera (WS) and its phytoconstituent(s) have immense untapped immunomodulatory and therapeutic potential and the anticancer potential of WS is well documented. To this effect, WS methanolic extract (WSME) was characterized using HPLC. Withanolides were identified as the major phytoconstituents. In vitro cytotoxicity of WSME was determined against human breast MDA-MB-231 and normal Vero cells using MTT assay. WSME displayed potent cytotoxicity against MDA-MB-231 cells (IC50: 66 µg/mL) and no effect on Vero cells in the above range. MD simulations of Withanolide A with SARS-CoV-2 main protease and spike receptor-binding domain as well as Withanolide B with SARS-CoV spike glycoprotein and SARS-CoV-2 papain-like protease were performed using Schrödinger. Stability of complexes followed the order 6M0J-Withanolide A > 6W9C-Withnaolide B > 5WRG-Withanolide B > 6LU7-Withanolide A. Maximum stable interaction(s) were observed between Withanolides A and B with SARS-CoV-2 and SARS-CoV spike glycoproteins, respectively. Withanolides A and B also displayed potent binding to pro-inflammatory markers viz. serum ferritin and IL-6. Thus, WS phytoconstituents have the potential to be tested further in vitro and in vivo as novel antiviral agents against COVID-19 patients having cancer as a co-morbidity. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00184-y.

11.
Int Immunopharmacol ; 136: 112232, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815352

RESUMO

Major significant advancements in pharmacology and drug technology have been made to heighten the impact of cancer therapies, improving the life expectancy of subjects diagnosed with malignancy. Statistically, 99% of breast cancers occur in women while 0.5-1% occur in men, the female gender being the strongest breast cancer risk factor. Despite several breakthroughs, breast cancer continues to have a worldwide impact and is one of the leading causes of mortality. Additionally, resistance to therapy is a crucial factor enabling cancer cell persistence and resurgence. As a result, the search and discovery of novel modulatory agents and effective therapies capable of controlling tumor progression and cancer cell proliferation is critical. Withania somnifera (L.) Dunal (WS), commonly known as Indian ginseng, has long been used traditionally for the treatment of several ailments in the Indian context. Recently, WS and its phytoconstituents have shown promising anti-breast cancer properties and, as such, can be employed as prophylactic as well as therapeutic adjuncts to the main line of breast cancer treatment. The present review is an attempt to explore and provide experimental evidences in support of the prophylactic and therapeutic potential of WS in breast cancer, along with a deeper insight into the multiple molecular mechanisms and novel targets through which it acts against breast and other hormonally-induced cancers viz. ovarian, uterine and cervical. This exploration might prove crucial in providing better understanding of breast cancer progression and metastasis and its use as an adjunct in improving disease prognosis and therapeutic outcome.


Assuntos
Neoplasias da Mama , Extratos Vegetais , Withania , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Withania/química , Feminino , Animais , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Fitoterapia
12.
Sci Rep ; 13(1): 17069, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816760

RESUMO

A global hazard to public health has been generated by the coronavirus infection 2019 (COVID-19), which is spreading quickly. Pomegranate is a strong source of antioxidants and has demonstrated a number of pharmacological characteristics. This work was aimed to analyze the phytochemicals present in ethanolic pomegranate seed extract (PSE) and their in vitro antioxidant potential and further in-silico evaluation for antiviral potential against crystal structure of two nucleocapsid proteins i.e., N-terminal RNA binding domain (NRBD) and C-terminal Domain (CTD) of SARS-CoV-2. The bioactive components from ethanolic extract of PSE were assessed by gas chromatography-mass spectroscopy (GC-MS). Free radical scavenging activity of PSE was determined using DPPH dye. Molecular docking was executed through the Glide module of Maestro software. Lipinski's 5 rule was applied for drug-likeness characteristics using cheminformatics Molinspiration software while OSIRIS Data Warrior V5.5.0 was used to predict possible toxicological characteristics of components. Thirty-two phytocomponents was detected in PSE by GC-MS technique. Free radical scavenging assay revealed the high antioxidant capacity of PSE. Docking analysis showed that twenty phytocomponents from PSE exhibited good binding affinity (Docking score ≥ - 1.0 kcal/mol) towards NRBD and CTD nucleocapsid protein. This result increases the possibility that the top 20 hits could prevent the spread of SARS-CoV-2 by concentrating on both nucleocapsid proteins. Moreover, molecular dynamics (MD) simulation using GROMACS was used to check their binding efficacy and internal dynamics of top complexes with the lowest docking scores. The metrics root mean square deviation (RMSD), root mean square fluctuation (RMSF), intermolecular hydrogen bonding (H-bonds) and radius of gyration (Rg) revealed that the lead phytochemicals form an energetically stable complex with the target protein. Majority of the phytoconstituents exhibited drug-likeness with non-tumorigenic properties. Thus, the PSE phytoconstituents could be useful source of drug or nutraceutical development in SARS-CoV-2 pathogenesis.


Assuntos
COVID-19 , Punica granatum , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , SARS-CoV-2 , Etanol , Simulação de Dinâmica Molecular , Proteínas do Nucleocapsídeo , Radicais Livres
13.
J Biomol Struct Dyn ; 40(4): 1858-1908, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33246398

RESUMO

Coronaviruses are etiological agents of extreme human and animal infection resulting in abnormalities primarily in the respiratory tract. Presently, there is no defined COVID-19 intervention and clinical trials of prospective therapeutic agents are still in the nascent stage. Withania somnifera (L.) Dunal (WS), is an important medicinal plant in Ayurveda. The present study aimed to evaluate the antiviral potential of selected WS phytoconstituents against the novel SARS-CoV-2 target proteins and human ACE2 receptor using in silico methods. Most of the phytoconstituents displayed good absorption and transport kinetics and were also found to display no associated mutagenic or adverse effect(s). Molecular docking analyses revealed that most of the WS phytoconstituents exhibited potent binding to human ACE2 receptor, SAR-CoV and SARS-CoV-2 spike glycoproteins as well as the two main SARS-CoV-2 proteases. Most of the phytoconstituents were predicted to undergo Phase-I metabolism prior to excretion. All phytoconstituents had favorable bioactivity scores with respect to various receptor proteins and target enzymes. SAR analysis revealed that the number of oxygen atoms in the withanolide backbone and structural rearrangements were crucial for effective binding. Molecular simulation analyses of SARS-CoV-2 spike protein and papain-like protease with Withanolides A and B, respectively, displayed a stability profile at 300 K and constant RMSDs of protein side chains and Cα atoms throughout the simulation run time. In a nutshell, WS phytoconstituents warrant further investigations in vitro and in vivo to unravel their molecular mechanism(s) and modes of action for their future development as novel antiviral agents against COVID-19.


Assuntos
COVID-19 , Withania , Animais , Antivirais/química , Antivirais/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Withania/química
14.
J Food Biochem ; 46(5): e14062, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35043973

RESUMO

Therapeutic drugs based on natural products for the treatment of SARS-CoV-2 are currently unavailable. This study was conducted to develop an anti-SARS-CoV-2 herbal medicine to face the urgent need for COVID-19 treatment. The bioactive components from ethanolic extract of Moringa oleifera fruits (MOFs) were determined by gas chromatography-mass spectroscopy (GC-MS). Molecular-docking analyses elucidated the binding effects of identified phytocomponents against SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) and human ACE2 receptor (PDB ID: 1R42) through the Glide module of Maestro software. GC-MS analysis unveiled the presence of 33 phytocomponents. Eighteen phytocomponents exhibited good binding affinity toward ACE2 receptor, and thirteen phytocomponents had a high affinity with spike glycoprotein. This finding suggests that the top 11 hits (Docking score ≥ -3.0 kcal/mol) could inhibit SARS-CoV-2 propagation. Intriguingly, most of the phytoconstituents displayed drug-likeness with no predicted toxicity. However, further studies are needed to validate their effects and mechanisms of action. PRACTICAL APPLICATIONS: Moringa oleifera (MO) also called "drumstick tree" has been used as an alternative food source to combat malnutrition and may act as an immune booster. GC-MS analysis unveiled that ethanolic extract of Moringa oleifera fruits (MOFs) possessed 33 active components of pyridine, aromatic fatty acid, oleic acid, tocopherol, methyl ester, diterpene alcohol, triterpene and fatty acid ester and their derivatives, which have various pharmacological and medicinal values. Virtual screening study of phytocomponents of MOF with human ACE2 receptor and SARS-CoV-2 spike glycoprotein exhibited good binding affinity. Based on molecular docking, the top 11 hits (Docking score ≥-3.0 kcal/mol) might serve as potential lead molecules in antiviral drug development. Intriguingly, most of the phytoconstituents displayed drug-likeness with no predicted toxicity. Thus, MOF might be used as a valuable source for antiviral drug development to combat COVID-19, an ongoing pandemic.


Assuntos
Antivirais , Moringa oleifera , Extratos Vegetais , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Antivirais/química , Antivirais/farmacologia , Ésteres/farmacologia , Ácidos Graxos/farmacologia , Frutas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Moringa oleifera/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/farmacologia , Tratamento Farmacológico da COVID-19
15.
J Tradit Complement Med ; 12(6): 608-618, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36325245

RESUMO

Introduction: Moringa oleifera is known as a 'natural nutrition of the tropics' because it provides vital nutritional supplements and a variety of pharmacological benefits. The focus of this study was to elucidate the dose dependent effects of Moringa oleifera leaf (MOL) extract on the growth of the human osteoblast-like osteosarcoma SaOS-2 cell line and primary osteoblast cells. Methods: Trypan blue & tetrazolium assay, intracellular ROS generation, chromatin condensation, cell cycle analysis, alkaline phosphatase (ALP), mineralization, and osteogenic gene expression were tested on both treated and untreated osteosarcoma SaOS-2 cells. Results: As revealed by cell viability assay, growth activity was observed at concentrations 25 and 50 µg/mL of MOL extract, whereas 100 and 200 µg/mL doses decreased the proliferation activity, resulting in ROS production and chromatin condensation. Cell cycle study revealed that MOL extract at 50 and 100 µg/mL concentrations arrested the cells in the G2/M phase. Low doses increased the ALP levels, mineralization, and expression of the bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (Runx2) genes in osteoblast-like SaOS-2 cells, however, high doses inhibited the proliferation properties of MOL extract. Through AutoDock Vina and iGEMDOCK 2.1, the interaction of active components of MOL, such as ß-sitosterol, quercetin and kaempferol, with BMP2 and Runx2 proteins revealed a reasonable binding affinity. Moreover, these components did not show any Lipinski's rule of five violation and showed predictable pharmacokinetic properties. Conclusion: The results of the biphasic dose-response of MOL extract on the growth activity of osteoblast-like SaOS-2 cells and in silico binding interface, may provide a therapeutic and/or preventive implication in prospective drug development.

16.
J Biomol Struct Dyn ; 40(9): 3928-3948, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33289456

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel etiological agent of coronavirus disease 2019 (COVID-19). Nigella sativa, commonly known as black seed or black cumin, has been a historical and traditional plant since thousands of years. Based on their therapeutic efficacy, the chief components of terpenoids and flavonoids were selected from N. sativa seeds and seed oil. This study was designed to check the antiviral efficacy of N. sativa main phytoconstituents against five potential targets of SARS-CoV-2 using in silico structure-based virtual screening approach. Out of twenty five phytocomponents, ten components showed best binding affinity against two viral proteins viz. N-terminal RNA binding domain (NRBD; PDB ID: 6M3M) of nucleocapsid protein and papain-like protease (PL-PRO; PDB ID: 6W9C) of SARS-CoV-2 using AutoDock 4.2.6, AutoDock Vina and iGEMDOCK. PASS analyses of all ten phytocomponents using Lipinski's Rule of five showed promising results. Further, druglikeness and toxicity assessment using OSIRIS Data Warrior v5.2.1 software exhibited the feasibility of phytocomponents as drug candidates with no predicted toxicity. Molecular dynamics simulation study of NRBD of SARS-CoV-2 nucleocapsid protein-alpha-spinasterol complex and PL-PRO-cycloeucalenol complex displayed strong stability at 300 K. Both these complexes exhibited constant root mean square deviation (RMSDs) of protein side chains and Cα atoms throughout the simulation run time. Interestingly, PL-PRO and NRBD are key proteins in viral replication, host cell immune evasion and viral assembly. Thus, NRBD and PL-PRO have the potential to serve as therapeutic targets for N. sativa phytoconstituents in drug discovery process against COVID-19.


Assuntos
Antivirais , Proteínas do Nucleocapsídeo de Coronavírus , Proteases Semelhantes à Papaína de Coronavírus , Nigella sativa , SARS-CoV-2 , Antivirais/química , Proteínas do Nucleocapsídeo de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nigella sativa/química , Fosfoproteínas/antagonistas & inibidores , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
17.
J Biomol Struct Dyn ; 40(12): 5515-5546, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33526003

RESUMO

A sudden outbreak of a novel coronavirus SARS-CoV-2 in 2019 has now emerged as a pandemic threatening to efface the existence of mankind. In absence of any valid and appropriate vaccines to combat this newly evolved agent, there is need of novel resource molecules for treatment and prophylaxis. To this effect, flavonol morin which is found in fruits, vegetables and various medicinal herbs has been evaluated for its antiviral potential in the present study. PASS analysis of morin versus reference antiviral drugs baricitinib, remdesivir and hydroxychloroquine revealed that morin displayed no violations of Lipinski's rule of five and other druglikeness filters. Morin also displayed no tumorigenic, reproductive or irritant effects and exhibited good absorption and permeation through GI (clogP <5). In principal component analysis, morin appeared closest to baricitinib in 3D space. Morin displayed potent binding to spike glycoprotein, main protease 3CLPro and papain-like protease PLPro of SARS-CoV-2, SARS-CoV and MERS-CoV using molecular docking and significant binding to three viral-specific host proteins viz. human ACE2, importin-α and poly (ADP-ribose) polymerase (PARP)-1, further lending support to its antiviral efficacy. Additionally, morin displayed potent binding to pro-inflammatory cytokines IL-6, 8 and 10 also supporting its anti-inflammatory activity. MD simulation of morin with SARS-CoV-2 3CLPro and PLPro displayed strong stability at 300 K. Both complexes exhibited constant RMSDs of protein side chains and Cα atoms throughout the simulation run time. In conclusion, morin might hold considerable therapeutic potential for the treatment and management of not only COVID-19, but also SARS and MERS if studied further. Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Enzima de Conversão de Angiotensina 2 , Antivirais/química , Flavonoides , Flavonóis , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Poli(ADP-Ribose) Polimerases , SARS-CoV-2 , Proteínas Virais/química
18.
BMC Complement Med Ther ; 22(1): 68, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35291987

RESUMO

BACKGROUND: Phoenix dactylifera L. has a diverse set of pharmacological properties due to its distinct phytochemical profile. The purpose of this study was to investigate the anticancer potential of Phoenix dactylifera seed extract (PDSE) in human breast cancer MDA-MB-231 and MCF-7 cells, as well as liver cancer HepG2 cells, and to investigate the anticancer efficacy in triple-negative MDA-MB-231 cells, followed by in silico validation of the molecular interaction between active components of PDSE and caspase-3, an apoptosis executioner protein . METHODS: In this study, human cancer cell lines were cultured and subsequently treated with 10 to 100 µg/mL of PDSE. MTT test was performed to determine the cell viability, MMP was measured using fluorescent probe JC-1, nuclear condensation was determined by Hoechst 33258 dye, Annexin V-FITC & PI staining and cell cycle analysis were evaluated through flow cytometer, and apoptotic markers were detected using western blotting. The bioactive agents in PDSE were identified using high-performance liquid chromatography (HPLC) analysis. The binding affinity was validated using molecular docking tools AutoDock Vina and iGEMDOCK v2.1. RESULTS: Cell viability data indicated that PDSE inhibited cell proliferation in both breast cancer cells and liver cancer cells. MDA-MB-231 cells showed maximum growth inhibition with an IC50 value of 85.86 µg/mL for PDSE. However, PDSE did not show any significant toxicity against the normal Vero cell line. PDSE induced MMP loss and formation of apoptotic bodies, enhanced late apoptosis at high doses and arrested cells in the S phase of cell cycle. PDSE activated the enzymatic activity of cleaved caspase-3 and caused the cleavage of poly-ADB ribose polymerase (PARP) protein. PDSE upregulated pro-apoptotic Bax protein markedly but  no significant effect on tumor suppressor protein p53, while it downregulated the anti-apoptotic Bcl-2 protein expression. HPLC analysis showed the presence of rutin and quercetin bioactive flavonols in ethanolic extract of PDS. Interestingly, both active components revealed a strong binding interaction with amino acid residues of caspase-3 (PDB ID: 2XYP; Hetero 4-mer - A2B2) protein. CONCLUSION: PDS could serve as a potential medicinal source for apoptotic cell death in human breast cancer cells and, thus, could be used as a promising and crucial candidate in anticancer drug development. This study warrants further in vivo research, followed by clinical investigation.


Assuntos
Neoplasias da Mama , Phoeniceae , Neoplasias da Mama/tratamento farmacológico , Caspase 3/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Simulação de Acoplamento Molecular , Phoeniceae/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
19.
Front Chem ; 10: 1069450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531331

RESUMO

Although, zinc oxide nanoparticles (ZRTs) as an anti-cancer agent have been the subject of numerous studies, none of the reports has investigated the impact of the reaction entry time of ion-carriers on the preparation of ZRTs. Therefore, we synthesized variants of ZRTs by extending the entry time of NaOH (that acts as a carrier of hydroxyl ions) in the reaction mixture. The anti-proliferative action, morphological changes, reactive oxygen species (ROS) production, and nuclear apoptosis of ZRTs on human A431 skin carcinoma cells were observed. The samples revealed crystallinity and purity by X-ray diffraction (XRD). Scanning electron microscopy (SEM) images of ZRT-1 (5 min ion carrier entry) and ZRT-2 (10 min ion carrier entry) revealed microtubule like morphology. On prolonging the entry time for ion carrier (NaOH) introduction in the reaction mixture, a relative ascent in the aspect ratio was seen. The typical ZnO band with a slight shift in the absorption maxima was evident with UV-visible spectroscopy. Both ZRT-1 and ZRT-2 exhibited non-toxic behavior as evident by RBC lysis assay. Additionally, ZRT-2 showed better anti-cancer potential against A431 cells as seen by MTT assay, ROS generation and chromatin condensation analyses. At 25 µM of ZRT-2, 5.56% cells were viable in MTT test, ROS production was enhanced to 166.71%, while 33.0% of apoptotic cells were observed. The IC50 for ZRT-2 was slightly lower (6 µM) than that for ZRT-1 (8 µM) against A431 cells. In conclusion, this paper presents a modest, economical procedure to generate ZRT nano-structures exhibiting strong cytotoxicity against the A431 cell line, indicating that ZRTs may have application in combating cancer.

20.
J Biomol Struct Dyn ; 40(20): 9648-9700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34243689

RESUMO

There is currently a dearth of specific therapies to treat respiratory infections caused by the three related species of coronaviruses viz. SARS-CoV-2, SARS-CoV and MERS-CoV. Prevention from disease is currently the safest and most convenient alternative available. The present study aimed to evaluate the preventive and therapeutic effect of fifteen phytoconstituents from medicinal plants of Ayurveda against coronaviruses by in silico screening. All the phytoconstituents exhibited rapid GI absorption and bioavailability and most of them had no toxicity versus reference drug chloroquine. BAS analyses revealed that most of the phytocomponents had favorable bioactivity scores towards biological target proteins. Principal component analysis revealed that most of the phytoconstituents fell close to chloroquine in 3D projection of chemical space. Affinity of phytoconstituents towards SARS-CoV-2 spike protein-human ACE2 complex decreased as isomeldenin > tinosporaside > EGCG whereas in case of unbound ACE2, the strength of binding followed the order isomeldenin > tinosporaside > ellagic acid. Towards SARS-CoV-2 main and papain-like proteases, the affinity decreased as isomeldenin > EGCG > tinosporaside and EGCG > tinosporaside > isomeldenin, respectively. Most phytoconstituents displayed significant binding kinetics to the selected protein targets than chloroquine. SAR analysis revealed that isomeldenin, tinosporaside, EGCG and ellagic acid bind to viral spike glycoproteins via H-bond, Pi-Pi, Pi-sigma and Pi-alkyl type interactions. Molecular dynamics simulation of isomeldenin and EGCG with SARS-CoV and SARS-CoV-2 spike glycoproteins exhibited low deviations throughout the 100 ns simulation indicating good stability and compactness of the protein-ligand complexes. Thus, the above four phytoconstituents have the potential to emerge as prophylactic and therapeutic agents against coronaviruses if investigated further in vitro and in vivo.


Assuntos
Antivirais , Ayurveda , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/química , Antivirais/química , Cloroquina/metabolismo , COVID-19 , Ácido Elágico/metabolismo , Glicoproteínas/metabolismo , Agentes de Imunomodulação , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA