Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 62(41): 16832-16841, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37782848

RESUMO

NHC-phosphinidene (NHCP) adducts are an emerging class of ligands with proven binding ability for main group and transition metal elements. They possess electron-rich P atoms with two lone pairs (LPs) of electrons, making them interesting platforms for the formation of multimetallic complexes. We describe herein a modular, high-yielding synthesis of bis(NHCP)s, starting from alkylidene-bridged bis(NHC)s ((IMe)2CnH2n; n = 1,3) and triphosphirane (PDip)3 (Dip = 2,6-iPr2C6H3) as phosphinidene transfer reagent. The coordination chemistry of [{DipP(IMe)}2CH2], 1, was studied in detail, and complexes [1·FeBr2] and [1·Rh(cod)]Cl were prepared, showing that the ligand has a flexible bite angle. The dicarbonyl complex [1·Rh(CO)2]Cl, with an average value for the CO stretching frequency of 2029 cm-1, indicates a strongly donating ligand when compared to related complexes. The binding ability of the remaining two phosphorus LPs was demonstrated with AuCl(SMe2), giving the heterotrimetallic complex [1·(AuCl)2·Rh(cod)]Cl. Moreover, [1·Rh(cod)]X (X- = Cl, B(3,5-(CF3)2-C6H3)4) was tested in the catalytic hydrogenation of methyl-Z-α-acetamidocinnamate (MAC) and dimethyl itaconate (ItMe2), revealing that the chloride complex was inactive, while the BArF complex demonstrated moderate activity. Additionally, [1·Rh(cod)]Cl was shown to be moderately air- and moisture-stable, slowly decomposing to the corresponding NHC-stabilized bis-dioxophosphorane, which was independently synthesized by treating the free ligand with dry O2.

2.
Inorg Chem ; 61(30): 11639-11650, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35856631

RESUMO

The synthesis of P,N-phosphaalkene ligands, py-CH═PMes* (1, py = 2-pyridyl, Mes* = 2,4,6-tBu-C6H2) and the novel quin-CH═PMes* (2, quin = 2-quinolinyl) is described. The reaction with [Rh(µ-Cl)cod]2 produces Rh(I) bis(phosphaalkene) chlorido complexes 3 and 4 with distorted trigonal bipyramidal coordination environments. Complexes 3 and 4 show a pronounced metal-to-ligand charge transfer (MLCT) from Rh into the ligand P═C π* orbitals. Upon heating, quinoline-based complex 4 undergoes twofold C-H bond activation at the o-tBu groups of the Mes* substituents to yield the cationic bis(phosphaindane) Rh(I) complex 5, which could not be observed for the pyridine-based analogue 3. Using sub- or superstoichiometric amounts of AgOTf the C-H bond activation at an o-tBu group of one or at both Mes* was detected, respectively. Density functional theory (DFT) studies suggest an oxidative proton shift pathway as an alternative to a previously reported high-barrier oxidative addition at Rh(I). The Rh(I) mono- and bis(phosphaindane) triflate complexes 6 and 7, respectively, undergo deprotonation at the benzylic CH2 group of the phosphaindane unit in the presence of KOtBu to furnish neutral, distorted square-planar Rh(I) complexes 8 and 9, respectively, with one of the P,N ligands being dearomatized. All complexes were fully characterized, including multinuclear NMR, vibrational, and ultraviolet-visible (UV-vis) spectroscopy, as well as single-crystal X-ray and elemental analysis.

3.
Angew Chem Int Ed Engl ; 61(32): e202207064, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35594171

RESUMO

N-containing molecules are mostly derived from ammonia (NH3 ). Ammonia activation has been demonstrated for single transition metal centers as well as for low-valent main group species. Phosphinidenes, mono-valent phosphorus species, can be stabilized by phosphines, giving so-called phosphanylidenephosphoranes of the type RP(PR'3 ). We demonstrate the facile, metal-free NH3 activation using ArP(PMe3 ), affording for the first time isolable secondary aminophosphines ArP(H)NH2 . DFT studies reveal that two molecules of NH3 act in concert to facilitate an NH3 for PMe3 exchange. Furthermore, H2 NR and HNR2 activation is demonstrated.

4.
Angew Chem Int Ed Engl ; 60(45): 24318-24325, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478231

RESUMO

Using the AlI precursor Cp3t Al in conjunction with triphosphiranes (PAr)3 (Ar=Mes, Dip, Tip) we have succeeded in preparing Lewis base-free cyclic diphosphadialanes with both the Al and P atoms bearing three substituents. Using the sterically more demanding Dip and Tip substituents the first 1,2-diphospha-3,4-dialuminacyclobutanes were obtained, whereas with Mes substituents [Cp3t Al(µ-PMes)]2 is formed. This divergent reactivity was corroborated by DFT studies, which indicated the thermodynamic preference for the 1,2-diphospha-3,4-dialuminacyclobutane form for sterically more demanding groups on phosphorus. Using Cp*Al we could extend this concept to the corresponding cyclic diarsadialanes [Cp*Al(µ-AsAr)]2 (Ar=Dip, Tip) and additionally add the phosphorus variants [Cp*Al(µ-PAr)]2 (P=Mes, Dip, Tip). The reactivity of one variant [Cp3t Al(µ-PPh)]2 towards NHCs was tested and resulted in double NHC-stabilised [Cp3t (IiPr2 )Al(µ-PPh)]2 .

5.
Chempluschem ; 89(7): e202400120, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38488262

RESUMO

Dipnictenes of the type RPn=PnR (Pn=P, As, Sb, Bi) can be viewed as dimers of the corresponding pnictinidenes R-Pn. Phosphanylidene- and arsanylidenephosphoranes (R-Pn(PMe3); Pn=P, As) have been shown to be versatile synthetic surrogates for the delivery of pnictinidene fragments. We now report that thermal treatment of 1 : 1 mixtures of R-P(PMe3) and R'-As(PMe3) gives access to arsaphosphenes of the type RP=AsR'. Three examples are presented and the properties and reactivity of Mes*P=AsDipTer (1) (Mes*=2,4,6-tBu3-C6H2; DipTer=2,6-(2,6-iPr2C6H3)2-C6H3) were studied in detail. Solid state 31P NMR spectroscopy revealed a large 31P NMR chemical shift anisotropy with a span of ca. 920 ppm for 1 while computational methods were employed to investigate this pronounced magnetic deshielding of the P atom in 1. In the presence of the carbene IMe4 (IMe4=:C(MeNCMe)2) 1 is shown to be split into the corresponding NHC adducts Mes*P(IMe4) and DipTerAs(IMe4), which is additionally shown for diarsenes.

6.
Dalton Trans ; 52(43): 15747-15756, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37846491

RESUMO

In this contribution we describe the general use of aryl-substituted triphosphiranes (Ar3P3; Ar = Mes, Dip, Tip) as phosphinidene transfer reagents towards N-heterocyclic carbenes (NHCs) to give a library of twelve N-heterocyclic carbene phosphinidene adducts of the type ArPNHC (NHCPs), in which the NHCs have varying steric profiles, allowing a systematic evaluation of their structural and NMR-spectroscopic properties. In the next series of experiments we utilized 1,3- and 1,4-phenylene bridged bis-NHCs to access a new class of chelating bis(NHCP)s, of which three derivatives could be structurally characterized. The 1,4-phenylene derivatives were shown to be susceptible to P-CNHC bond cleavage when irradiated with an LED (396 nm), providing a rare example of phosphinidene release from NHCPs. The coordination chemistry of 1,3-phenylene bridged bis(NHCP)s towards GeCl2(dioxane) and GaI3 was investigated and revealed the formation of ion-separated cationic complexes, with significant charge transfer from the ligand to the metal center according to NBO analyses.

7.
Chem Commun (Camb) ; 58(70): 9786-9789, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35971739

RESUMO

The isolation of the first diarsene radical anion by reduction of a neutral diarsene is presented. Comprehensive characterisation in conjunction with DFT calculations reveals unpaired spin density residing in the antibonding π*-orbital with involvement of the terphenyl ligands. First reactivity studies reveal no pronounced radical, but rather reducing properties.

8.
Dalton Trans ; 50(42): 15111-15117, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34611690

RESUMO

Classically tetraaryl diphosphanes have been synthesized through Wurtz-type reductive coupling of halophosphanes R2PX or more recently, through the dehydrocoupling of phosphines R2PH. Catalytic variants of the dehydrocoupling reaction have been reported, but are limited to R2PH compounds. Using PEt3 as a catalyst, we now show that TipPBr2 (Tip = 2,4,6-iPr3C6H2) is selectively coupled to give the dibromodiphosphane (TipPBr)2 (1), a compound not accessible using classic Mg reduction. Surprisingly, when using DipPBr2 (Dip = 2,6-iPr3C6H3) in the PEt3 catalysed reductive coupling the diphosphene (PDip)2 (2) with a PP double was formed selectively. In benzene solutions (PDip)2 has a half life time of ca. 28 days and can be utilized with NHCs to access NHC-phosphinidene adducts. To show that this protocol is more widely applicable, we show that Ph2PCl and Mes2PX (X = Cl, Br) are efficiently coupled using 10 mol% of PEt3 to give (Ph2P)2 and (Mes2P)2, respectively. Control experiments show that [BrPEt3]Br is a potential oxidation product in the catalytic cycle, which can be debrominated by Zn dust as a sacrificial reductant.

9.
Dalton Trans ; 50(5): 1838-1844, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33471018

RESUMO

Phospha-Wittig reagents, RPPMe3 (R = Mes* 2,4,6-tBu3-C6H2; MesTer 2,6-(2,4,6-Me3C6H2)-C6H3; DipTer 2,6-(2,6-iPr2C6H3)-C6H3), can be considered as phosphine-stabilized phosphinidenes. In this study we show that PMe3 can be displaced by NHCs or NHOs. Interestingly, phosphinidene-like reactivity results in a subsequent C(sp2)-H activation of the exocyclic CH2 group in NHOs. This concept was further extended to allyl-apended NHOs, which resulted in phosphine-substituted allyl species.

10.
Dalton Trans ; 49(35): 12354-12364, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32845265

RESUMO

Terphenyl(bisamino)phosphines have been identified as effective ligands in cationic gold(i) complexes for the hydroamination of acetylenes. These systems are related to Buchwald phosphines and their steric properties have been evaluated. Effective hydroamination was noted even at low catalyst loadings and a series of cationic gold(i) complexes has been structurally characterized clearly indicating stabilizing effects through gold-arene interactions.

11.
Chem Sci ; 10(34): 7859-7867, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31853345

RESUMO

Triphosphiranes are three-membered phosphorus cycles and their fundamental reactivity has been studied in recent decades. We recently developed a high-yielding, selective synthesis for various aryl-substituted triphosphiranes. Variation of the reaction conditions in combination with theoretical studies helped to rationalize the formation of these homoleptic phosphorus ring systems and highly reactive intermediates could be isolated. In addition we showed that a titanocene synthon [Cp2Ti(btmsa)] facilitates the selective conversion of these triphosphiranes into titanocene diphosphene complexes. This unexpected reactivity mode was further studied theoretically and experimental evidence is presented for the proposed reaction mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA