Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(13): 4023-4032, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37338422

RESUMO

The domain-based local pair natural orbital (PNO) coupled-cluster DLPNO-CCSD(T) method has been proven to provide accurate single-point energies at a fraction of the cost of canonical CCSD(T) calculations. However, the desired "chemical accuracy" can only be obtained with a large PNO space and extended basis set. We present a simple yet accurate and efficient correction scheme based on a perturbative approach. Here, in addition to DLPNO-CCSD(T) energy, one calculates DLPNO-MP2 correlation energy with the same settings as in the preceding coupled-cluster calculation. In the next step, the canonical MP2 correlation energy is obtained in the same orbital basis. This can be efficiently performed for essentially all molecule sizes accessible with the DLPNO-CCSD(T) method. By taking the difference between the canonical MP2 and DLPNO-MP2 energies, we obtain a correction term that can be added to the DLPNO-CCSD(T) correlation energy. This way, one can obtain the total correlation energy close to the limit of the complete PNO space (cPNO). The presented approach allows us to significantly increase the accuracy of the DLPNO-CCSD(T) method for both closed- and open-shell systems. The latter are known to be especially challenging for locally correlated methods. Unlike the previously developed PNO extrapolation procedure by Altun, Neese, and Bistoni ( J. Chem. Theory Comput. 2020, 16, 6142-6149), this strategy allows us to get the DLPNO-CCSD(T) correlation energy at the cPNO limit in a cost-efficient way, resulting in a minimal overall increase in calculation time as compared to the uncorrected method.

2.
Sci Rep ; 11(1): 7977, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846412

RESUMO

Graphene-based nanohybrids are good candidates for various applications. However, graphene exhibits some unwanted features such as low solubility in an aqueous solution or tendency to aggregate, limiting its potential applications. On the contrary, its derivatives, such as graphene oxide (GO) and reduced graphene oxide (RGO), have excellent properties and can be easily produced in large quantities. GO/RGO nanohybrids with porphyrins were shown to possess great potential in the field of photocatalytic hydrogen production, pollutant photodegradation, optical sensing, or drug delivery. Despite the rapid progress in experimental research on the porphyrin-graphene hybrids some fundamental questions about the structures and the interaction between components in these systems still remain open. In this work, we combine detailed experimental and theoretical studies to investigate the nature of the interaction between the GO/RGO and two metal-free porphyrins 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) and 5,10,15,20-tetrakis(4-hydroxyphenyl) porphyrin (TPPH)]. The two porphyrins form stable nanohybrids with GO/RGO support, although both porphyrins exhibited a slightly higher affinity to RGO. We validated finite, Lerf-Klinowski-type (Lerf et al. in J Phys Chem B 102:4477, 1998) structural models of GO ([Formula: see text]) and RGO ([Formula: see text]) and successfully used them in ab initio absorption spectra simulations to track back the origin of experimentally observed spectral features. We also investigated the nature of low-lying excited states with high-level wavefunction-based methods and shown that states' density becomes denser upon nanohybrid formation. The studied nanohybrids are non-emissive, and our study suggests that this is due to excited states that gain significant charge-transfer character. The presented efficient simulation protocol may ease the properties screening of new GO/RGO-nanohybrids.

3.
Mater Sci Eng C Mater Biol Appl ; 100: 1-10, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948043

RESUMO

We demonstrate that a new, stable, artificial TATA (T - thymine, A - adenine) box is recognized by amino acids recognizing the natural TATA box. Here, the former mimicked, as a minimal motif, oligodeoxyribonucleotide interactions with amino acids of proteins involved in repairing of damaged dsDNA. By electropolymerization, we molecularly imprinted non-labeled 5'-TATAAA-3' via Watson-Crick nucleobase pairing, thus synthesizing, in a one-step procedure, the hexakis[bis(2,2'-bithien-5-yl)] TTTATA and simultaneously hybridizing it with the 5'-TATAAA-3' template. That is, a stable dsDNA analog having a controlled sequence of nucleobases was formed in the molecularly imprinted polymer (MIP). The 5'-TATAAA-3' was by the X-ray photoelectron spectroscopy (XPS) depth profiling found to be homogeneously distributed both in the bulk of the MIP film and on its surface. The 5'-TATAAA-3' concentration in the 2.8(±0.2)-nm relative surface area, ~140-nm thick MIP film was 2.1 mM. The MIP served as a matrix of an artificial TATA box with the TATAAA-promoter sequence. We comprehensively characterized this artificial DNA hybrid by the polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and X-ray photoelectron spectroscopy (XPS). Further, we examined interactions of DNA repairing TATA binding protein (TBP) amino acids with the artificial TATA box prepared. That is, molecules of l-phenylalanine aromatic amino acid were presumably engaged in stacking interactions with nucleobase steps of this artificial TATA box. The nitrogen-to­phosphorus atomic % ratio on the surface of the MIP-(5'-TATAAA-3') film increased by ~1.6 times after film immersing in the l-glutamic acid solution, as determined using the XPS depth profiling. Furthermore, l-lysine and l-serine preferentially interacted with the phosphate moiety of 5'-TATAAA-3'. We monitored amino acids interactions with the artificial TATA box using real-time piezoelectric microgravimetry at a quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy under flow injection analysis (FIA) conditions.


Assuntos
Reparo do DNA , Impressão Molecular , Polímeros/química , TATA Box/genética , Aminoácidos/química , Aminoácidos/metabolismo , DNA/química , DNA/metabolismo , Conformação Molecular , Espectroscopia Fotoeletrônica , Técnicas de Microbalança de Cristal de Quartzo , Ressonância de Plasmônio de Superfície , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA