Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pulm Pharmacol Ther ; 22(1): 20-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19041412

RESUMO

RATIONALE: Clinical studies show that flexible dosing (maintenance and symptom-driven dose adjustments) of budesonide and formoterol (BUD/FORM) improves control of asthma exacerbations as compared to fixed maintenance dosing protocols (maintenance therapy) even when the latter utilize higher BUD/FORM doses. This suggests that dose-response relationships for certain pathobiologic mechanisms in asthma shift over time. Here, we have conducted animal studies to address this issue. OBJECTIVES: (1) To test in an animal asthma-like model whether it is possible to achieve the same or greater pharmacological control over bronchoconstriction and airway/lung inflammation, and with less total drug used, by flexible BUD/FORM dosing (upward adjustment of doses) in association with allergen challenges. (2) To determine whether the benefit requires adjustment of both drug components. METHODS: Rats sensitized on days 0 and 7 were challenged intratracheally with ovalbumin on days 14 and 21. On days 13-21, rats were treated intratracheally with fixed maintenance or flexible BUD/FORM combinations. On day 22, rats were challenged with methacholine and lungs were harvested for analysis. RESULTS: A flexible BUD/FORM dosing regimen (using 3.3 times less total drug than the fixed maintenance high dose regimen), delivered the same or greater reductions of excised lung gas volume (a measure of gas trapped in lung by bronchoconstriction) and lung weight (a measure of inflammatory oedema). When either BUD or FORM alone was increased on days of challenge, the benefit of the flexible dose upward adjustment was lost. CONCLUSIONS: Flexible dosing of the BUD/FORM combination improves the pharmacological inhibition of allergen-induced bronchoconstriction and an inflammatory oedema in an allergic asthma-like rat model.


Assuntos
Asma/tratamento farmacológico , Broncodilatadores/administração & dosagem , Budesonida/administração & dosagem , Etanolaminas/administração & dosagem , Animais , Asma/fisiopatologia , Broncoconstrição/efeitos dos fármacos , Broncodilatadores/farmacologia , Budesonida/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Etanolaminas/farmacologia , Fumarato de Formoterol , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ovalbumina , Ratos , Ratos Endogâmicos BN , Fatores de Tempo
2.
Br J Pharmacol ; 158(1): 169-79, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19558544

RESUMO

BACKGROUND AND PURPOSE: Beta(2)-adrenoceptor agonists (beta(2)-agonists) are important bronchodilators used in the treatment of asthma and chronic obstructive pulmonary disease. At the molecular level, beta(2)-adrenergic agonist stimulation induces desensitization of the beta(2)-adrenoceptor. In this study, we have examined the relationships between initial effect and subsequent reduction of responsiveness to restimulation for a panel of beta(2)-agonists in cellular and in vitro tissue models. EXPERIMENTAL APPROACH: Beta(2)-adrenoceptor-induced responses and subsequent loss of receptor responsiveness were studied in primary human airway smooth muscle cells and bronchial epithelial cells by measuring cAMP production. Receptor responsiveness was compared at equi-effective concentrations, either after continuous incubation for 24 h or after a 1 h pulse exposure followed by a 23 h washout. Key findings were confirmed in guinea pig tracheal preparations in vitro. KEY RESULTS: There were differences in the reduction of receptor responsiveness in human airway cells and in vitro guinea pig trachea by a panel of beta(2)-agonists. When restimulation occurred immediately after continuous incubation, loss of responsiveness correlated with initial effect for all agonists. After the 1 h pulse exposure, differences between agonists emerged, for example isoprenaline and formoterol induced the least reduction of responsiveness. High lipophilicity was, to some extent, predictive of loss of responsiveness, but other factors appeared to be involved in determining the relationships between effect and subsequent loss of responsiveness for individual agonists. CONCLUSIONS AND IMPLICATIONS: There were clear differences in the ability of different beta(2) agonists to induce loss of receptor responsiveness at equi-effective concentrations.


Assuntos
Agonistas Adrenérgicos/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 2 , Receptores Adrenérgicos beta 2/fisiologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Relação Dose-Resposta a Droga , Cobaias , Humanos , Masculino , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Mucosa Respiratória/citologia , Fatores de Tempo , Traqueia/citologia , Traqueia/efeitos dos fármacos , Traqueia/fisiologia
3.
Drug Metab Dispos ; 35(10): 1788-96, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17627977

RESUMO

The airway retention of inhaled glucocorticosteroids (GCs) depends largely on their lipophilicity. Inhaled budesonide (BUD) becomes highly lipophilic reversibly by the formation of esters acting as a reservoir of active BUD. Ciclesonide (CIC) was also reported to form esters after hydrolysis to active metabolite (CIC-AM). We have investigated lipophilicity and airway retention of BUD, CIC/CIC-AM, fluticasone propionate (FP), and mometasone furoate (MF), and compared esterification of BUD and CIC-AM and its contribution to GC airway retention. Rat tracheas were preincubated with the esterification inhibitor cyclandelate or vehicle. A (3)H-GC ( approximately 10(-7) M: BUD, CIC, CIC-AM, FP, MF) was added for 20 min. After incubation, one half of the trachea was used for analysis of GC uptake and the other to analyze GC release during 3 h in drug-free medium. GC species in trachea halves were analyzed by radiochromatography. At 20 min, the uptake of BUD was similar to that of CIC/CIC-AM; however, the BUD-ester pool was 9-fold greater (p < 0.01). BUD overall retention in trachea at 3 h was greater than that of other GCs (p < 0.01), and the BUD-ester pool was 3-fold greater than the CIC-AM-ester pool (p < 0.01). Cyclandelate decreased the initial BUD- and CIC-AM-ester pools (p < 0.01), and reduced the overall retention of BUD at 3 h (p < 0.01) but not of CIC-AM. Thus, BUD becomes esterified in the airways more promptly and to a greater extent than CIC-AM, and BUD esterification prolongs BUD airway retention. In contrast, airway retention of CIC-AM and CIC seems to be determined mainly by their lipophilicity, similar to FP and MF, which are not esterified.


Assuntos
Budesonida/metabolismo , Glucocorticoides/metabolismo , Pregnenodionas/metabolismo , Traqueia/metabolismo , Animais , Ciclandelato/farmacologia , Esterificação/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos BN , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA