Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37261561

RESUMO

Pit building antlions Euroleon nostras have been submitted to artificial cues in order to delineate their faculty to localize a prey. Series of propagating pulses in sand have been created from an extended source made of 10 piezoelectric transducers equally spaced on a line and located at a large distance from the pit. The envelope of each pulse encompasses six oscillations at a carrier frequency of 1250 Hz and up to eight oscillations at 1666 Hz. In one set of experiments, the first wave front is followed by similar wave fronts and the antlions respond to the cue by throwing sand in the opposite direction of the wave front propagation direction. In another set of experiments, the first wave front is randomly spatially structured while the propagation of the wave fronts inside the envelope of the pulse are not. In that case, the antlions respond less to the cue by throwing sand, and when they do, their sand throwing is more randomly distributed in direction. The finding shows that the localization of vibration signal by antlions are based on the equivalent for hearing animals of interaural time difference in which the onset has more significance than the interaural phase difference.


Assuntos
Insetos , Areia , Animais , Larva/fisiologia , Insetos/fisiologia , Comportamento Predatório/fisiologia , Sinais (Psicologia)
2.
BMC Genomics ; 24(1): 115, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922761

RESUMO

BACKGROUND: Termites are among the most successful insects on Earth and can feed on a broad range of organic matter at various stages of decomposition. The termite gut system is often referred to as a micro-reactor and is a complex structure consisting of several components. It includes the host, its gut microbiome and fungal gardens, in the case of fungi-growing higher termites. The digestive tract of soil-feeding higher termites is characterised by radial and axial gradients of physicochemical parameters (e.g. pH, O2 and H2 partial pressure), and also differs in the density and structure of residing microbial communities. Although soil-feeding termites account for 60% of the known termite species, their biomass degradation strategies are far less known compared to their wood-feeding counterparts. RESULTS: In this work, we applied an integrative multi-omics approach for the first time at the holobiont level to study the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis. We relied on 16S rRNA gene community profiling, metagenomics and (meta)transcriptomics to uncover the distribution of functional roles, in particular those related to carbohydrate hydrolysis, across different gut compartments and among the members of the bacterial community and the host itself. We showed that the Labiotermes gut was dominated by members of the Firmicutes phylum, whose abundance gradually decreased towards the posterior segments of the hindgut, in favour of Bacteroidetes, Proteobacteria and Verrucomicrobia. Contrary to expectations, we observed that L. labralis gut microbes expressed a high diversity of carbohydrate active enzymes involved in cellulose and hemicelluloses degradation, making the soil-feeding termite gut a unique reservoir of lignocellulolytic enzymes with considerable biotechnological potential. We also evidenced that the host cellulases have different phylogenetic origins and structures, which is possibly translated into their different specificities towards cellulose. From an ecological perspective, we could speculate that the capacity to feed on distinct polymorphs of cellulose retained in soil might have enabled this termite species to widely colonise the different habitats of the Amazon basin. CONCLUSIONS: Our study provides interesting insights into the distribution of the hydrolytic potential of the highly compartmentalised higher termite gut. The large number of expressed enzymes targeting the different lignocellulose components make the Labiotermes worker gut a relevant lignocellulose-valorising model to mimic by biomass conversion industries.


Assuntos
Isópteros , Animais , Isópteros/genética , Solo , Filogenia , RNA Ribossômico 16S/genética , Celulose/metabolismo
3.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511685

RESUMO

Termites are major decomposers in terrestrial ecosystems and the second most diverse lineage of social insects. The Kalotermitidae form the second-largest termite family and are distributed across tropical and subtropical ecosystems, where they typically live in small colonies confined to single wood items inhabited by individuals with no foraging abilities. How the Kalotermitidae have acquired their global distribution patterns remains unresolved. Similarly, it is unclear whether foraging is ancestral to Kalotermitidae or was secondarily acquired in a few species. These questions can be addressed in a phylogenetic framework. We inferred time-calibrated phylogenetic trees of Kalotermitidae using mitochondrial genomes of ∼120 species, about 27% of kalotermitid diversity, including representatives of 21 of the 23 kalotermitid genera. Our mitochondrial genome phylogenetic trees were corroborated by phylogenies inferred from nuclear ultraconserved elements derived from a subset of 28 species. We found that extant kalotermitids shared a common ancestor 84 Ma (75-93 Ma 95% highest posterior density), indicating that a few disjunctions among early-diverging kalotermitid lineages may predate Gondwana breakup. However, most of the ∼40 disjunctions among biogeographic realms were dated at <50 Ma, indicating that transoceanic dispersals, and more recently human-mediated dispersals, have been the major drivers of the global distribution of Kalotermitidae. Our phylogeny also revealed that the capacity to forage is often found in early-diverging kalotermitid lineages, implying the ancestors of Kalotermitidae were able to forage among multiple wood pieces. Our phylogenetic estimates provide a platform for critical taxonomic revision and future comparative analyses of Kalotermitidae.


Assuntos
Genoma Mitocondrial , Isópteros , Animais , Núcleo Celular , Ecossistema , Humanos , Isópteros/genética , Filogenia
4.
J Chem Ecol ; 49(11-12): 642-651, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37566284

RESUMO

Stylotermitidae appear peculiar among all termites, feeding in trunks of living trees in South Asia only. The difficulty to collect them limits the ability to study them, and they thus still belong to critically unknown groups in respect to their biology. We used a combination of microscopic observations, chemical analysis and behavioural tests, to determine the source and chemical nature of the trail-following pheromone of Stylotermes faveolus from India and S. halumicus from Taiwan. The sternal gland located at the 5th abdominal segment was the exclusive source of the trail-following pheromone in both S. faveolus and S. halumicus, and it is made up of class I, II and III secretory cells. Using gas chromatography coupled mass spectrometry, (3Z)-dodec-3-en-1-ol (DOE) was identified as the trail-following pheromone which elicits strong behavioural responses in workers at a threshold around 10- 4 ng/cm and 0.1 ng/gland. Our results confirm the switch from complex aldehyde trail-following pheromones occurring in the basal groups to simpler linear alcohols in the ancestor of Kalotermitidae and Neoisoptera.


Assuntos
Comunicação Animal , Baratas , Feromônios , Animais , Cromatografia Gasosa-Espectrometria de Massas , Feromônios/química
5.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33097518

RESUMO

All termites have established a wide range of associations with symbiotic microbes in their guts. Some termite species are also associated with microbes that grow in their nests, but the prevalence of these associations remains largely unknown. Here, we studied the bacterial communities associated with the termites and galleries of three wood-feeding termite species by using 16S rRNA gene amplicon sequencing. We found that the compositions of bacterial communities among termite bodies, termite galleries, and control wood fragments devoid of termite activities differ in a species-specific manner. Termite galleries were enriched in bacterial operational taxonomic units (OTUs) belonging to Rhizobiales and Actinobacteria, which were often shared by several termite species. The abundance of several bacterial OTUs, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus, was reduced in termite galleries. Our results demonstrate that both termite guts and termite galleries harbor unique bacterial communities.IMPORTANCE As is the case for all ecosystem engineers, termites impact their habitat by their activities, potentially affecting bacterial communities. Here, we studied three wood-feeding termite species and found that they influence the composition of the bacterial communities in their surrounding environment. Termite activities have positive effects on Rhizobiales and Actinobacteria abundance and negative effects on the abundance of several ubiquitous genera, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus Our results demonstrate that termite galleries harbor unique bacterial communities.


Assuntos
Bactérias/classificação , Isópteros/microbiologia , Microbiota , Animais , Bactérias/genética , Biodiversidade , RNA Ribossômico 16S/genética , Especificidade da Espécie
6.
Am J Primatol ; 83(12): e23339, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34633101

RESUMO

Gestural communication permeates all domains of chimpanzees' social life and is intentional in use. However, we still have only limited information on how young apes develop the sociocognitive skills needed for intentional communication. In this cross-sectional study, we document the development of behavioral adjustment to the recipient's visual attention-considered a hallmark of intentional communication-in wild immature chimpanzees' gestural communication. We studied 11 immature chimpanzees (Pan troglodytes schweinfurthii): three infants, four juveniles, and four adolescents gesturing towards their mother. We quantified silent-visual, audible, and contact gestures indexed to maternal visual attention and inattention. We investigated unimodal adjustment, defined by the capacity of young chimpanzees to deploy fewer silent-visual signals when their mothers did not show full visual attention towards them as compared with when they did. We then examined cross-modal adjustment, defined as the capacity of chimpanzees to deploy more audible-or-contact gestures than silent-visual gestures in the condition where their mothers did not show full visual attention as compared to when they did. Our results show a gradual decline in the use of silent-visual gestures when the mother is not visually attentive with increasing age. The absence of silent-visual gesture production toward a visually inattentive recipient (complete unimodal adjustment) was not fully in place until adolescence. Immature chimpanzees used more audible-or-contact gestures than silent-visual ones when their mothers did not show visual attention and vice-versa when they did. This cross-modal adjustment was expressed in juveniles and adolescents but not in infants. Overall, this study shows that infant chimpanzees were limited in their sensitivity to maternal attention when gesturing, whereas adolescent chimpanzees adjusted their communication appropriately. Juveniles present an intermediate pattern with cross-modal adjustment preceding unimodal adjustment and with variability in the age of onset.


Assuntos
Comunicação Animal , Pan troglodytes , Animais , Estudos Transversais , Feminino , Gestos , Mães
7.
Artigo em Inglês | MEDLINE | ID: mdl-32661557

RESUMO

The antlion larvae (Myrmeleontidae) are ambush predators. They detect substrate-borne vibrations induced by the movement of the prey. European pit-building antlions (Myrmeleon inconspicuus) are studied for their ability to perceive vibrations generated by the locomotion of an ant (Cataglyphis cursor) outside the pit. These strides have been recorded and copied in detail in their time sequences. The signal created was emitted by piezoelectric transducers placed several centimeters outside the peripheries of the pits: the ant movements create waves with particle accelerations that are three orders of magnitude less than g, alleviating any possibility of sand avalanche towards the bottom of the pit. Depending on the amplitude of the vibrations, the antlions answer back, generally by sand tossing. One remarkable feature is the time delay between the start of the cue and the predatory behaviour induced by this cue. This time delay is studied versus the cue amplitude. We found that antlions answer back within minutes to cues with amplitudes of nanometer range, and within seconds to these same cues if they are preceded by a sequence of signals at the Ångström amplitude. This difference in latency is used to evidence the sensitivity to vibrations at an extremely low level.


Assuntos
Insetos/fisiologia , Comportamento Predatório/fisiologia , Animais , Sinais (Psicologia) , Insetos/classificação , Larva , Orientação/fisiologia , Areia , Vibração
8.
Biol Lett ; 16(8): 20200348, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810428

RESUMO

The division of labour between reproductive queens and mostly sterile workers is among the defining characteristics of social insects. Queen-produced chemical signals advertising her presence and fertility status, i.e. queen pheromones, are normally used to assert the queen's reproductive dominance in the colony. Most queen pheromones identified to date are chemicals that stop the daughter workers from reproducing. Nevertheless, it has long been suggested that queen pheromones could also regulate reproduction in different ways. In some multiple-queen ants with obligately sterile workers, for example-such as fire ants and pharaoh ants-queen pheromones are thought to regulate reproduction by inhibiting the rearing of new sexuals. Here, we identify the first such queen pheromone in the pharaoh ant Monomorium pharaonis and demonstrate its mode of action via bioassays with the pure biosynthesized compound. In particular, we show that the monocyclic diterpene neocembrene, which in different Monomorium species is produced solely by fertile, egg-laying queens, strongly inhibits the rearing of new sexuals (queens and males) and also exerts a weakly attractive 'queen retinue' effect on the workers. This is the first time that a queen pheromone with such a dual function has been identified in a social insect species with obligately sterile workers.


Assuntos
Formigas , Animais , Feminino , Fertilidade , Masculino , Oviposição , Feromônios , Reprodução
9.
J Chem Ecol ; 46(5-6): 461-474, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32300913

RESUMO

Congeneric species that live in sympatry may have evolved various mechanisms that maintain reproductive isolation among species. However, with the spread of invasive organisms owing to increased global human activity, some species that evolved in allopatry can now be found outside their native range and may have the opportunity to interact, in the absence of mechanisms for reproductive isolation. In South Florida, where the Asian subterranean termite, Coptotermes gestroi (Wamann), and the Formosan subterranean termite, Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae) are invasive, the two species can engage in heterospecific mating behavior as their distribution range and their dispersal flight season both overlap. Termites rely on semiochemicals for many of their activities, including finding a mate after a dispersal flight. In this study, we showed that females of both species produce (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol (DTE) from their tergal glands as a shared sex pheromone. We suggest that both species primarily rely on an inundative dispersal flight strategy to find a mate, and that DTE is used as a short distance pheromone or contact pheromone to initiate and maintain the tandem between males and females. The preference of C. gestroi males for C. formosanus females during tandem resulted from the relatively high amount of DTE produced by tergal glands of C. formosanus females, when compared with those of C. gestroi females. This results in confusion of mating in the field during simultaneous dispersal flights, with a potential for hybridization. Such observations imply that no prezygotic barriers emerged while the two species evolved in allopatry for ~18 Ma.


Assuntos
Isópteros/fisiologia , Polienos/metabolismo , Atrativos Sexuais/metabolismo , Comportamento Sexual Animal , Distribuição Animal , Animais , Evolução Biológica , Corte , Feminino , Florida , Espécies Introduzidas , Masculino , Estações do Ano
10.
J Chem Ecol ; 46(5-6): 475-482, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32529331

RESUMO

Trail-following behavior is a key to ecological success of termites, allowing them to orient themselves between the nesting and foraging sites. This behavior is controlled by specific trail-following pheromones produced by the abdominal sternal gland occurring in all termite species and developmental stages. Trail-following communication has been studied in a broad spectrum of species, but the "higher" termites (i.e. Termitidae) from the subfamily Syntermitinae remain surprisingly neglected. To fill this gap, we studied the trail-following pheromone in six genera and nine species of Syntermitinae. Our chemical and behavioral experiments showed that (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol is the single component of the pheromone of all the termite species studied, except for Silvestritermes euamignathus. This species produces both (3Z,6Z)-dodeca-3,6-dien-1-ol and neocembrene, but only (3Z,6Z)-dodeca-3,6-dien-1-ol elicits trail-following behavior. Our results indicate the importance of (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol, the most widespread communication compound in termites, but also the repeated switches to other common pheromones as exemplified by S. euamignathus.


Assuntos
Isópteros/fisiologia , Feromônios/metabolismo , Animais
11.
Mol Phylogenet Evol ; 132: 100-104, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30503950

RESUMO

Termites are the principal decomposers in tropical and subtropical ecosystems around the world. Time-calibrated molecular phylogenies show that some lineages of Neoisoptera diversified during the Oligocene and Miocene, and acquired their pantropical distribution through transoceanic dispersal events, probably by rafting in wood. In this paper, we intend to resolve the historical biogeography of one of the earliest branching lineages of Neoisoptera, the Rhinotermitinae. We used the mitochondrial genomes of 27 species of Rhinotermitinae to build two robust time-calibrated phylogenetic trees that we used to reconstruct the ancestral distribution of the group. Our analyses support the monophyly of Rhinotermitinae and all genera of Rhinotermitinae. Our molecular clock trees provided time estimations that diverged by up to 15.6 million years depending on whether or not 3rd codon positions were included. Rhinotermitinae arose 50.4-64.6 Ma (41.7-74.5 Ma 95% HPD). We detected four disjunctions among biogeographic realms, the earliest of which occurred 41.0-56.6 Ma (33.0-65.8 Ma 95% HPD), and the latest of which occurred 20.3-34.2 Ma (15.9-40.4 Ma 95% HPD). These results show that the Rhinotermitinae acquired their distribution through a combination of transoceanic dispersals and dispersals across land bridges.


Assuntos
Baratas/classificação , Filogeografia , Animais , Baratas/genética , Variação Genética , Genoma Mitocondrial , Filogenia
12.
J Eukaryot Microbiol ; 66(6): 882-891, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31033101

RESUMO

Holomastigotes is a protist genus (Parabasalia: Spirotrichonymphea) that resides in the hindguts of "lower" termites. It can be distinguished from other parabasalids by spiral flagellar bands that run along the entire length of the cell, an anterior nucleus, a reduced or absent axostyle, the presence of spherical vesicles inside the cells, and the absence of ingested wood particles. Eight species have been described based on their morphology so far, although no molecular data were available prior to this study. We determined the 18S rRNA gene sequences of Holomastigotes from the hindguts of Hodotermopsis sjostedti, Reticulitermes flavipes, Reticulitermes lucifugus, and Reticulitermes tibialis. Phylogenetic analyses placed all sequences in an exclusive and well-supported clade with the type species, Holomastigotes elongatum from R. lucifugus. However, the phylogenetic position of Holomastigotes within the Spirotrichonymphea was not resolved. We describe two new species, Holomastigotes flavipes n. sp. and Holomastigotes tibialis n. sp., inhabiting the hindguts of R. flavipes and R. tibialis, respectively.


Assuntos
Isópteros/parasitologia , Parabasalídeos/classificação , Animais , Sistema Digestório/parasitologia , Parabasalídeos/citologia , Parabasalídeos/genética , Filogenia , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Simbiose
13.
Mol Biol Evol ; 34(3): 589-597, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025274

RESUMO

The higher termites (Termitidae) are keystone species and ecosystem engineers. They have exceptional biomass and play important roles in decomposition of dead plant matter, in soil manipulation, and as the primary food for many animals, especially in the tropics. Higher termites are most diverse in rainforests, with estimated origins in the late Eocene (∼54 Ma), postdating the breakup of Pangaea and Gondwana when most continents became separated. Since termites are poor fliers, their origin and spread across the globe requires alternative explanation. Here, we show that higher termites originated 42-54 Ma in Africa and subsequently underwent at least 24 dispersal events between the continents in two main periods. Using phylogenetic analyses of mitochondrial genomes from 415 species, including all higher termite taxonomic and feeding groups, we inferred 10 dispersal events to South America and Asia 35-23 Ma, coinciding with the sharp decrease in global temperature, sea level, and rainforest cover in the Oligocene. After global temperatures increased, 23-5 Ma, there was only one more dispersal to South America but 11 to Asia and Australia, and one dispersal back to Africa. Most of these dispersal events were transoceanic and might have occurred via floating logs. The spread of higher termites across oceans was helped by the novel ecological opportunities brought about by environmental and ecosystem change, and led termites to become one of the few insect groups with specialized mammal predators. This has parallels with modern invasive species that have been able to thrive in human-impacted ecosystems.


Assuntos
Isópteros/genética , Distribuição Animal , Animais , DNA Mitocondrial/genética , Ecossistema , Genoma Mitocondrial , Espécies Introduzidas , Isópteros/crescimento & desenvolvimento , Mitocôndrias/genética , Filogenia , Filogeografia/métodos , Floresta Úmida
14.
J Eukaryot Microbiol ; 65(1): 77-92, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28682523

RESUMO

The guts of lower termites are inhabited by host-specific consortia of cellulose-digesting flagellate protists. In this first investigation of the symbionts of the family Serritermitidae, we found that Glossotermes oculatus and Serritermes serrifer each harbor similar parabasalid morphotypes: large Pseudotrichonympha-like cells, medium-sized Leptospironympha-like cells with spiraled bands of flagella, and small Hexamastix-like cells; oxymonadid flagellates were absent. Despite their morphological resemblance to Pseudotrichonympha and Leptospironympha, a SSU rRNA-based phylogenetic analysis identified the two larger, trichonymphid flagellates as deep-branching sister groups of Teranymphidae, with Leptospironympha sp. (the only spirotrichosomid with sequence data) in a moderately supported basal position. Only the Hexamastix-like flagellates are closely related to trichomonadid flagellates from Rhinotermitidae. The presence of two deep-branching lineages of trichonymphid flagellates in Serritermitidae and the absence of all taxa characteristic of the ancestral rhinotermitids underscores that the flagellate assemblages in the hindguts of lower termites were shaped not only by a progressive loss of flagellates during vertical inheritance but also by occasional transfaunation events, where flagellates were transferred horizontally between members of different termite families. In addition to the molecular phylogenetic analyses, we present a detailed morphological characterization of the new spirotrichosomid genus Heliconympha using light and electron microscopy.


Assuntos
Microbioma Gastrointestinal , Isópteros/parasitologia , Parabasalídeos/classificação , Animais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Parabasalídeos/citologia , Parabasalídeos/genética , Parabasalídeos/ultraestrutura , RNA de Protozoário/análise , RNA Ribossômico/análise
15.
BMC Genomics ; 18(1): 681, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28863779

RESUMO

BACKGROUND: Thanks to specific adaptations developed over millions of years, the efficiency of lignin, cellulose and hemicellulose decomposition of higher termite symbiotic system exceeds that of many other lignocellulose utilizing environments. Especially, the examination of its symbiotic microbes should reveal interesting carbohydrate-active enzymes, which are of primary interest for the industry. Previous metatranscriptomic reports (high-throughput mRNA sequencing) highlight the high representation and overexpression of cellulose and hemicelluloses degrading genes in the termite hindgut digestomes, indicating the potential of this technology in search for new enzymes. Nevertheless, several factors associated with the material sampling and library preparation steps make the metatranscriptomic studies of termite gut prokaryotic symbionts challenging. METHODS: In this study, we first examined the influence of the sampling strategy, including the whole termite gut and luminal fluid, on the diversity and the metatranscriptomic profiles of the higher termite gut symbiotic bacteria. Secondly, we evaluated different commercially available kits combined in two library preparative pipelines for the best bacterial mRNA enrichment strategy. RESULTS: We showed that the sampling strategy did not significantly impact the generated results, both in terms of the representation of the microbes and their transcriptomic profiles. Nevertheless collecting luminal fluid reduces the co-amplification of unwanted RNA species of host origin. Furthermore, for the four studied higher termite species, the library preparative pipeline employing Ribo-Zero Gold rRNA Removal Kit "Epidemiology" in combination with Poly(A) Purist MAG kit resulted in a more efficient rRNA and poly-A-mRNAdepletion (up to 98.44% rRNA removed) than the pipeline utilizing MICROBExpress and MICROBEnrich kits. High correlation of both Ribo-Zero and MICROBExpresse depleted gene expression profiles with total non-depleted RNA-seq data has been shown for all studied samples, indicating no systematic skewing of the studied pipelines. CONCLUSIONS: We have extensively evaluated the impact of the sampling strategy and library preparation steps on the metatranscriptomic profiles of the higher termite gut symbiotic bacteria. The presented methodological approach has great potential to enhance metatranscriptomic studies of the higher termite intestinal flora and to unravel novel carbohydrate-active enzymes.


Assuntos
Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica/métodos , Isópteros/microbiologia , Lignina/metabolismo , Animais , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Simbiose , Transcrição Gênica
16.
Mol Biol Evol ; 33(3): 809-19, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26609080

RESUMO

In termites, as in many social insects, some individuals specialize in colony defense, developing diverse weaponry. As workers of the termite Neocapritermes taracua (Termitidae: Termitinae) age, their efficiency to perform general tasks decreases, while they accumulate defensive secretions and increase their readiness to fight. This defensive mechanism involves self-sacrifice through body rupture during which an enzyme, stored as blue crystals in dorsal pouches, converts precursors produced by the labial glands into highly toxic compounds. Here, we identify both components of this activated defense system and describe the molecular basis responsible for the toxicity of N. taracua worker autothysis. The blue crystals are formed almost exclusively by a specific protein named BP76. By matching N. taracua transcriptome databases with amino acid sequences, we identified BP76 to be a laccase. Following autothysis, the series of hydroquinone precursors produced by labial glands get mixed with BP76, resulting in the conversion of relatively harmless hydroquinones into toxic benzoquinone analogues. Neocapritermes taracua workers therefore rely on a two-component activated defense system, consisting of two separately stored secretions that can react only after suicidal body rupture, which produces a sticky and toxic cocktail harmful to opponents.


Assuntos
Proteínas de Insetos/genética , Isópteros/genética , Animais , Análise por Conglomerados , Ativação Enzimática , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Insetos/metabolismo , Isópteros/metabolismo , Lacase/genética , Lacase/metabolismo , Filogenia , Especificidade por Substrato , Transcriptoma
17.
Proc Biol Sci ; 284(1853)2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446695

RESUMO

Predators may eavesdrop on their prey using innate signals of varying nature. In regards to social prey, most of the prey signals are derived from social communication and may therefore be highly complex. The most efficient predators select signals that provide the highest benefits. Here, we showed the use of eusocial prey signals by the termite-raiding ant Odontoponera transversaO. transversa selected the trail pheromone of termites as kairomone in several species of fungus-growing termites (Termitidae: Macrotermitinae: Odontotermes yunnanensis, Macrotermes yunnanensis, Ancistrotermes dimorphus). The most commonly predated termite, O. yunnanensis, was able to regulate the trail pheromone component ratios during its foraging activity. The ratio of the two trail pheromone compounds was correlated with the number of termites in the foraging party. (3Z)-Dodec-3-en-1-ol (DOE) was the dominant trail pheromone component in the initial foraging stages when fewer termites were present. Once a trail was established, (3Z,6Z)-dodeca-3,6-dien-1-ol (DDE) became the major recruitment component in the trail pheromone and enabled mass recruitment of nest-mates to the food source. Although the ants could perceive both components, they revealed stronger behavioural responses to the recruitment component, DDE, than to the common major component, DOE. In other words, the ants use the trail pheromone information as an indication of suitable prey abundance, and regulate their behavioural responses based on the changing trail pheromone component. The eavesdropping behaviour in ants therefore leads to an arms race between predator and prey where the species specific production of trail pheromones in termites is targeted by predatory ant species.


Assuntos
Formigas/fisiologia , Isópteros/química , Feromônios , Animais , Comportamento Predatório
18.
Proc Biol Sci ; 283(1827): 20160179, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030416

RESUMO

Reticulitermes, Heterotermes and Coptotermes form a small termite clade with partly overlapping distributions. Although native species occur across all continents, the factors influencing their distribution are poorly known. Here, we reconstructed the historical biogeography of these termites using mitochondrial genomes of species collected on six continents. Our analyses showed that Reticulitermes split from Heterotermes + Coptotermesat 59.5 Ma (49.9-69.5 Ma 95% CI), yet the oldest split within Reticulitermes(Eurasia and North America) is 16.1 Ma (13.4-19.5 Ma) and the oldest split within Heterotermes + Coptotermesis 36.0 Ma (33.9-40.5 Ma). We detected 14 disjunctions between biogeographical realms, all of which occurred within the last 34 Ma, not only after the break-up of Pangaea, but also with the continents in similar to current positions. Land dispersal over land bridges explained four disjunctions, oceanic dispersal by wood rafting explained eight disjunctions, and human introduction was the source of two recent disjunctions. These wood-eating termites, therefore, appear to have acquired their modern worldwide distribution through multiple dispersal processes, with oceanic dispersal and human introduction favoured by the ecological traits of nesting in wood and producing replacement reproductives.


Assuntos
Distribuição Animal , Genoma de Inseto , Genoma Mitocondrial , Isópteros/fisiologia , Animais , Espécies Introduzidas , Isópteros/genética , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
19.
J Chem Ecol ; 42(10): 1070-1081, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27639394

RESUMO

Termite nests often are referred to as the most elaborate constructions of animals. However, some termite species do not build a nest at all and instead found colonies inside the nests of other termites. Since these so-called inquilines do not need to be in direct contact with the host population, the two colonies usually live in separate parts of the nest. Adaptations of both the inquiline and its host are likely to occur to maintain the spatial exclusion and reduce the costs of potential conflicts. Among them, mutual avoidance, based on chemical cues, is expected. We investigated chemical aspects of cohabitation between Constrictotermes cavifrons (Nasutitermitinae) and its obligatory inquiline Inquilinitermes inquilinus (Termitinae). Inquiline soldiers produce in their frontal glands a blend of wax esters, consisting of the C12 alcohols (3Z)-dodec enol, (3Z,6Z)-dodecadienol, and dodecanol, esterified with different fatty acids. The C12 alcohols appear to be cleaved gradually from the wax esters, and they occur in the frontal gland, in soldier headspace, and in the walls of the inquiline part of the nest. Electrophysiological experiments revealed that (3Z)-dodecenol and (3Z,6Z)-dodecadienol are perceived by workers of both species. Bioassays indicated that inquiline soldier heads, as well as the two synthetic compounds, are attractive to conspecific workers and elicit an arresting behavior, while host soldiers and workers avoid these chemicals at biologically relevant amounts. These observations support the hypothesis that chemically mediated spatial separation of the host and the inquiline is an element of a conflict-avoidance strategy in these species.


Assuntos
Isópteros/fisiologia , Comportamento de Nidação , Álcoois/metabolismo , Comunicação Animal , Animais , Reação de Fuga , Esterificação , Ésteres/metabolismo , Feromônios/metabolismo , Olfato , Ceras/metabolismo
20.
Proc Biol Sci ; 282(1809): 20150260, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26019158

RESUMO

Asexual queen succession (AQS), in which workers, soldiers and dispersing reproductives are produced sexually while numerous non-dispersing queens arise through thelytokous parthenogenesis, has recently been described in three species of lower termites of the genus Reticulitermes. Here, we show that AQS is not an oddity restricted to a single genus of lower termites, but a more widespread strategy occurring also in the most advanced termite group, the higher termites (Termitidae). We analysed the genetic structure in 10 colonies of the Neotropical higher termite Embiratermes neotenicus (Syntermitinae) using five newly developed polymorphic microsatellite loci. The colonies contained one primary king accompanied either by a single primary queen or by up to almost 200 neotenic queens. While the workers, the soldiers and most future dispersing reproductives were produced sexually, the non-dispersing neotenic queens originated through thelytokous parthenogenesis of the founding primary queen. Surprisingly, the mode of thelytoky observed in E. neotenicus is most probably automixis with central fusion, contrasting with the automixis with terminal fusion documented in Reticulitermes. The occurrence of AQS based on different mechanisms of ploidy restoration raises the hypothesis of an independent evolutionary origin of this unique reproductive strategy in individual lineages of lower and higher termites.


Assuntos
Isópteros/fisiologia , Partenogênese , Animais , Evolução Biológica , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Genótipo , Haplótipos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Isópteros/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA