Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Appl Acarol ; 78(2): 173-179, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31147886

RESUMO

Ticks are subject to various environmental constrains, such as dehydration, desiccation and long-waiting for hosts to attach. These factors are crucial for tick survival in the environment. Ticks have developed physiological mechanisms and/or strategies that allow adaptability and survival in the environment in which they live, such as spiracle control and cyclical or discontinuous gas exchanges. However, details of gas exchange profile have been reported only in a few tick species in the past. The present study aims to identify and describe respiratory gas exchange patterns in a tropical population of the brown dog tick Rhipicephalus sanguineus sensu lato and effects of blood feeding. Adult female ticks were fed on rabbit hosts. Partially fed (4 to 6 days) and completely fed (> 9 days) ticks were collected daily during feeding, weighed and subjected to CO2 emission measurement at 25 °C using flow-through respirometry. Unfed adult females showed a well-defined periodical burst of CO2 emissions, followed by short periods of low-emission intercepts. The fed groups had drastic changes in respiratory profiles with semi-engorged females showing a high-intensity respiratory pattern alternating between continuous and discontinuous and the engorged females showing a continuous respiratory pattern with high frequency and intensity. The findings from this study contribute to a better understanding of the respiratory physiological process of a tropical population of the dog tick, which may help future investigations on other biological aspects of this ectoparasite and development of control measures.


Assuntos
Dióxido de Carbono/metabolismo , Rhipicephalus sanguineus/fisiologia , Animais , Comportamento Alimentar , Feminino , Troca Gasosa Pulmonar , Coelhos
2.
Exp Parasitol ; 164: 91-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26948715

RESUMO

Inhibition of the complement system during and after haematophagy is of utmost importance for tick success in feeding and tick development. The role of such inhibition is to minimise damage to the intestinal epithelium as well as avoiding inflammation and opsonisation of salivary molecules at the bite site. Despite its importance, the salivary anti-complement activity has been characterised only in species belonging to the Ixodes ricinus complex which saliva is able to inhibit the alternative and lectin pathways. Little is known about this activity in other species of the Ixodidae family. Thus, the aim of this study was to describe the inhibition of the classical pathway of the complement system by the saliva of Amblyomma cajennense at different stages of the haematophagy. The A. cajennense saliva and salivary gland extract (SGE) were able to inhibit the complement classical pathway through haemolytic assays with higher activity observed when saliva was used. The anti-complement activity is present in the salivary glands of starving females and also in females throughout the whole feeding process, with significant higher activity soon after tick detachment. The SGE activity from both females fed on mice or horses had no significant correlation (p > 0.05) with tick body weight. The pH found in the intestinal lumen of A. cajennense was 8.04 ± 0.08 and haemolytic assays performed at pH 8.0 showed activation of the classical pathway similarly to what occurs at pH 7.4. Consequently, inhibition could be necessary to protect the tick enterocytes. Indeed, the inhibition observed by SGE was higher in pH 8.0 in comparison to pH 7.4 reinforcing the role of saliva in protecting the intestinal cells. Further studies should be carried out in order to identify the inhibitor molecule and characterise its inhibition mechanism.


Assuntos
Via Clássica do Complemento/imunologia , Ixodidae/imunologia , Animais , Peso Corporal , Feminino , Hemólise/imunologia , Doenças dos Cavalos/parasitologia , Cavalos , Concentração de Íons de Hidrogênio , Intestinos/química , Ixodidae/anatomia & histologia , Masculino , Camundongos , Saliva/imunologia , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária
3.
Sci Rep ; 9(1): 6764, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043627

RESUMO

Ornithodoros rostratus is a South American argasid tick which importance relies on its itchy bite and potential as disease vector. They feed on a wide variety of hosts and secrete different molecules in their saliva and intestinal content that counteract host defences and help to accommodate and metabolize the relatively large quantity of blood upon feeding. The present work describes the transcriptome profile of salivary gland (SG) and midgut (MG) of O. rostratus using Illumina sequencing. A total of 8,031 contigs were assembled and assigned to different functional classes. Secreted proteins were the most abundant in the SG and accounted for ~67% of all expressed transcripts with contigs with identity to lipocalins and acid tail proteins being the most representative. On the other hand, immunity genes were upregulated in MG with a predominance of defensins and lysozymes. Only 10 transcripts in SG and 8 in MG represented ~30% of all RNA expressed in each tissue and one single contig (the acid tail protein ORN-9707) represented ~7% of all expressed contigs in SG. Results highlight the functional difference of each organ and identified the most expressed classes and contigs of O. rostratus SG and MG.


Assuntos
Proteínas de Artrópodes/metabolismo , Ornithodoros/metabolismo , Proteoma/análise , RNA-Seq/métodos , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Transcriptoma , Animais , Proteínas de Artrópodes/genética , Biologia Computacional , Evolução Molecular , Ornithodoros/genética , Ornithodoros/crescimento & desenvolvimento , Filogenia , Proteínas e Peptídeos Salivares/genética
4.
Vet Parasitol ; 254: 6-9, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29657013

RESUMO

Haemonchus contortus is the most prevalent nematode in tropical and subtropical regions and is responsible for significant losses in small ruminant production systems. Control of this parasite is based on the use of synthetic anthelmintics; although effective, prolonged and indiscriminate use can select for populations of resistant nematodes. Hydrolyzed yeast can help prevent populations of nematodes and is low in cost. The present study aimed to evaluate the preventive effect of hydrolyzed yeast on H. contortus through in vitro and in vivo assays. In in vitro experiments, the yeast preparation was tested at different stages of the H. contortus life cycle via tests of egg hatchability, larval development, larval exsheathment and larval migration. Both eggs and L3 larvae were obtained from sheep artificially infected with a monospecific strain of H. contortus. In in vivo experiments, animals were treated with hydrolyzed yeast (53.4 mg/kg/BW), and fecal egg counts (FECs), feces culture and Famacha were performed. The yeast preparation inhibited larval exsheathment in a dose-dependent manner (IC95 of 0.46 mg/mL), though no activity at the other stages of the H. contortus life cycle was observed. The hydrolyzed yeast preparation was able to reduce FECs in treated animals from D40 to D54 (p < 0.05), showing an average efficiency of 60%. The yeast exhibited preventive properties, and the IC95 value suggests that H. contortus is highly susceptible. Our results indicate that administration of hydrolyzed yeast, which is already used commercially in ruminant nutrition, is an alternative method for the control of nematodes, mainly H. contortus.


Assuntos
Antinematódeos/farmacologia , Doenças das Cabras/tratamento farmacológico , Hemoncose/veterinária , Haemonchus/efeitos dos fármacos , Fermento Seco/farmacologia , Animais , Antinematódeos/administração & dosagem , Fezes/parasitologia , Doenças das Cabras/parasitologia , Cabras , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia , Haemonchus/crescimento & desenvolvimento , Técnicas In Vitro , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Contagem de Ovos de Parasitas/veterinária , Fermento Seco/administração & dosagem
5.
Front Immunol ; 8: 1065, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912782

RESUMO

Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP) of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b, and C9b on agarose-coated plates in a dose-dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR) experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B complex to prevent C3 convertase formation (C3b-Bb formation) is a novel mechanism that differs from previously described strategies used by other organisms to inhibit the AP of the host complement system.

6.
Parasit Vectors ; 9(1): 445, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515662

RESUMO

BACKGROUND: Rhipicephalus (Boophilus) microplus is the main ectoparasite affecting livestock worldwide. For a successful parasitism, ticks need to evade several immune responses of their hosts, including the activation of the complement system. In spite of the importance of R. microplus, previous work only identified one salivary molecule that blocks the complement system. The current study describes complement inhibitory activities induced by R. microplus salivary components and mechanisms elicited by putative salivary proteins on both classical and alternative complement pathways. RESULTS: We found that R. microplus saliva from fully- and partially engorged females was able to inhibit both pathways. Saliva acts strongly at the initial steps of both complement activation pathways. In the classical pathway, the saliva blocked C4 cleavage, and hence, deposition of C4b on the activation surface, suggesting that the inhibition occurs at some point between C1q and C4. In the alternative pathway, saliva acts by binding to initial components of the cascade (C3b and properdin) thereby preventing the C3 convertase formation and reducing C3b production and deposition as well as cleavage of factor B. Saliva has no effect on formation or decay of the C6 to C8 components of the membrane attack complex. CONCLUSION: The saliva of R. microplus is able to inhibit the early steps of classical and alternative pathways of the complement system. Saliva acts by blocking C4 cleavage and deposition of C4b on the classical pathway activation surface and, in the alternative pathway, saliva bind to initial components of the cascade (C3b and properdin) thereby preventing the C3 convertase formation and the production and deposition of additional C3b.


Assuntos
Proteínas Inativadoras do Complemento/metabolismo , Via Alternativa do Complemento/efeitos dos fármacos , Via Clássica do Complemento/efeitos dos fármacos , Rhipicephalus/imunologia , Saliva/metabolismo , Animais , Evasão da Resposta Imune , Tolerância Imunológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA