Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 442(1): 114211, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39147261

RESUMO

Blood vessel growth and osteogenesis in the skeletal system are coupled; however, fundamental aspects of vascular function in osteoblast-to-osteocyte transition remain unclear. Our study demonstrates that vascular smooth muscle cells (VSMCs), but not endothelial cells, are sufficient to drive bone marrow mesenchymal stromal cell-derived osteoblast-to-osteocyte transition via ß-catenin signaling and exosome-mediated communication. We found that VSMC-derived exosomes are loaded with transcripts encoding proteins associated with the osteocyte phenotype and members of the WNT/ß-catenin signaling pathway. In contrast, endothelial cell-derived exosomes facilitated mature osteoblast differentiation by reprogramming the TGFB1 gene family and osteogenic transcription factors osterix (SP7) and RUNX2. Notably, VSMCs express significant levels of tetraspanins (CD9, CD63, and CD81) and drive the intracellular trafficking of exosomes with a lower membrane zeta potential than those from other cells. Additionally, the high ATP content within these exosomes supports mineralization mechanisms, as ATP is a substrate for alkaline phosphatase. Osteocyte function was further validated by RNA sequencing, revealing activity in genes related to intermittent mineralization and sonic hedgehog signaling, alongside a significant increase in TNFSF11 levels. Our findings unveil a novel role of VSMCs in promoting osteoblast-to-osteocyte transition, thus offering new insights into bone biology and homeostasis, as well as in bone-related diseases. Clinically, these insights could pave the way for innovative therapeutic strategies targeting VSMC-derived exosome pathways to treat bone-related disorders such as osteoporosis. By manipulating these signaling pathways, it may be possible to enhance bone regeneration and improve skeletal health in patients with compromised bone structure and function.


Assuntos
Exossomos , Músculo Liso Vascular , Osteoblastos , Osteócitos , Osteogênese , beta Catenina , Osteoblastos/metabolismo , Osteoblastos/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Exossomos/metabolismo , Animais , beta Catenina/metabolismo , beta Catenina/genética , Osteócitos/metabolismo , Osteócitos/citologia , Camundongos , Osteogênese/genética , Osteogênese/fisiologia , Miócitos de Músculo Liso/metabolismo , Diferenciação Celular , Humanos , Via de Sinalização Wnt , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células Cultivadas , Transdução de Sinais , Camundongos Endogâmicos C57BL
2.
Cell Biol Int ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591759

RESUMO

During the morphological changes occurring in osteoblast differentiation, Sonic hedgehog (Shh) plays a crucial role. While some progress has been made in understanding this process, the epigenetic mechanisms governing the expression of Hh signaling members in response to bone morphogenetic protein 7 (BMP7) signaling in osteoblasts remain poorly understood. To delve deeper into this issue, we treated pre-osteoblasts (pObs) with 100 ng/mL of BMP7 for up to 21 days. Initially, we validated the osteogenic phenotype by confirming elevated expression of well-defined gene biomarkers, including Runx2, Osterix, Alkaline Phosphatase (Alp), and bone sialoprotein (Bsp). Simultaneously, Hh signaling-related members Sonic (Shh), Indian (Ihh), and Desert (Dhh) Hedgehog (Hh) exhibited nuanced modulation over the 21 days in vitro period. Subsequently, we evaluated epigenetic markers, and our data revealed a notable change in the CpG methylation profile, considering the methylation/hydroxymethylation ratio. CpG methylation is a reversible process regulated by DNA methyltransferases and demethylases, including Ten-eleven translocation (Tets), which also exhibited changes during the acquisition of the osteogenic phenotype. Specifically, we measured the methylation pattern of Shh-related genes and demonstrated a positive Pearson correlation for GLI Family Zinc Finger 1 (Gli1) and Patched (Ptch1). This data underscores the significance of the epigenetic machinery in modulating the BMP7-induced osteogenic phenotype by influencing the activity of Shh-related genes. In conclusion, this study highlights the positive impact of epigenetic control on the expression of genes related to hedgehog signaling during the morphogenetic changes induced by BMP7 signaling in osteoblasts.

3.
Cell Biol Int ; 48(5): 665-681, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38420868

RESUMO

Epigenetic changes, particularly histone compaction modifications, have emerged as critical regulators in the epigenetic pathway driving endothelial cell phenotype under constant exposure to laminar forces induced by blood flow. However, the underlying epigenetic mechanisms governing endothelial cell behavior in this context remain poorly understood. To address this knowledge gap, we conducted in vitro experiments using human umbilical vein endothelial cells subjected to various tensional forces simulating pathophysiological blood flow shear stress conditions, ranging from normotensive to hypertensive forces. Our study uncovers a noteworthy observation wherein endothelial cells exposed to high shear stress demonstrate a decrease in the epigenetic marks H3K4ac and H3K27ac, accompanied by significant alterations in the levels of HDAC (histone deacetylase) proteins. Moreover, we demonstrate a negative regulatory effect of increased shear stress on HOXA13 gene expression and a concomitant increase in the expression of the long noncoding RNA, HOTTIP, suggesting a direct association with the suppression of HOXA13. Collectively, these findings represent the first evidence of the role of histone-related epigenetic modifications in modulating chromatin compaction during mechanosignaling of endothelial cells in response to elevated shear stress forces. Additionally, our results highlight the importance of understanding the physiological role of HOXA13 in vascular biology and hypertensive patients, emphasizing the potential for developing small molecules to modulate its activity. These findings warrant further preclinical investigations and open new avenues for therapeutic interventions targeting epigenetic mechanisms in hypertensive conditions.


Assuntos
Epigênese Genética , Histonas , Humanos , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hemodinâmica , Estresse Mecânico , Células Cultivadas
4.
Oral Dis ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37994179

RESUMO

BACKGROUND: Here, we evaluated whether the histone lysine demethylase 5B (JARID1B), is involved in osteogenic phenotype commitment of periodontal ligament cells (PDLCs), by considering their heterogeneity for osteoblast differentiation. MATERIALS AND METHODS: Epigenetic, transcriptional, and protein levels of a gene set, involved in the osteogenesis, were investigated by performing genome-wide DNA (hydroxy)methylation, mRNA expression, and western blotting analysis at basal (without osteogenic induction), and at the 3rd and 10th days of osteogenic stimulus, in vitro, using PDLCs with low (l) and high (h) osteogenic potential as biological models. RESULTS: h-PDLCs showed reduced levels of JARID1B, compared to l-PDLCs, with significant inversely proportional correlations between RUNX2 and RUNX2/p57. Epigenetically, a significant reduction in the global H3K4me3 content was observed only in h-PDLCs. Immunoblotting data reveal a significant reduction in the global H3K4me3 content, at 3 days of induction only in h-PDLCs, while an increase in the global H3K4me3 content was observed at 10 days for both PDLCs. Additionally, positive correlations were found between global H3K4me3 levels and JARID1B gene expression. CONCLUSIONS: Altogether, our results show the crucial role of JARID1B in repressing PDLCs osteogenic phenotype and this claims to pre-clinical protocols proposing JARID1B as a potential therapeutic target.

5.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446684

RESUMO

The iconic caged shape of fullerenes gives rise to a series of unique chemical and physical properties; hence a deeper understanding of the attractive and repulsive forces between two buckyballs can bring detrimental information about the structural stability of such complexes, providing significant data applicable for several studies. The potential energy curves for the interaction of multiple van der Waals buckyball complexes with increasing mass were theoretically obtained within the DFT framework at ωB97xD/6-31G(d) compound model. These potential energy curves were employed to estimate the spectroscopic constants and the lifetime of the fullerene complexes with the Discrete Variable Representation and with the Dunham approaches. It was revealed that both methods are compatible in determining the rovibrational structure of the dimers and that they are genuinely stable, i.e., long-lived complexes. To further inquire into the nature of such interaction, Bader's QTAIM approach was applied. QTAIM descriptors indicate that the interactions of these closed-shell systems are dominated by weak van der Waals forces. This non-covalent interaction character was confirmed by the RDG analysis scheme. Indirectly, QTAIM also allowed us to confirm the stability of the non-covalent bonded fullerene dimers. Our lifetime calculations have shown that the studied dimers are stable for more than 1 ps, which increases accordingly with the number of carbon atoms.


Assuntos
Fulerenos , Fulerenos/química , Carbono , Análise Espectral , Fenômenos Físicos
6.
Dev Biol ; 470: 37-48, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33152274

RESUMO

Mesenchymal stem cells are candidates for therapeutic strategies in periodontal repair due to their osteogenic potential. In this study, we identified epigenetic markers during osteogenic differentiation, taking advantage of the individual pattern of mesenchymal cells of the periodontal ligament with high (h-PDLCs) and low (l-PDLCs) osteogenic capacity. We found that the involvement of non-coding RNAs in the regulation of the RUNX2 gene is strongly associated with high osteogenic potential. Moreover, we evaluated miRs and genes that encode enzymes to process miRs and their biogenesis. Our data show the high expression of the XPO5 gene, and miRs 7 and 22 observed in the l-PDLCs might be involved in acquiring osteogenic potential, suppressing RUNX2 gene expression. Further, an inversely proportional correlation between lncRNAs (HOTAIR and HOTTIP) and RUNX2 gene expression was observed in both l- and h-PDLCs, and it was also related to the distinct osteogenic phenotypes. Thus, our results indicate the low expression of XPO5 in h-PDLC might be the limiting point for blocking the miRs biogenesis, allowing the high gene expression of RUNX2. In accordance, the low expression of miRs, HOTAIR, and HOTTIP could be a prerequisite for increased osteogenic potential in h-PDLCs. These results will help us to better understand the underlying mechanisms of osteogenesis, considering the heterogeneity in the osteogenic potential of PDLCs that might be related to a distinct transcriptional profile of lncRNAs and the biogenesis machinery.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/metabolismo , Osteogênese , Ligamento Periodontal/citologia , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/metabolismo , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Carioferinas/genética , Carioferinas/metabolismo , MicroRNAs/genética , Ligamento Periodontal/metabolismo , Fenótipo , RNA Longo não Codificante/genética , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo , Transcrição Gênica , Transcriptoma , Adulto Jovem
7.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566318

RESUMO

In this work, a theoretical investigation of the effects caused by the doping of C20 with silicon (Si) atom as well as the adsorption of CO, CO2 and N2 gases to C20 and C19Si fullerenes was carried out. In concordance with previous studies, it was found that the choice of the doping site can control the structural, electronic, and energetic characteristics of the C19Si system. The ability of C20 and C19Si to adsorb CO, CO2 and N2 gas molecules was evaluated. In order to modulate the process of adsorption of these chemical species to C19Si, an externally oriented electric field was included in the theoretical calculations. It was observed that C19Si is highly selective with respect to CO adsorption. Upon the increase of the electric field intensity the adsorption energy was magnified correspondingly and that the interaction between CO and C19Si changes in nature from a physical adsorption to a partial covalent character interaction.

8.
J Sex Med ; 18(5): 875-888, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33863684

RESUMO

BACKGROUND: An increased fibrosis of the corpora cavernosa is a prevalent process that underlies most cases of erectile dysfunction. Apelin, an endogenous circulating peptide, has been documented as an important effector on cardiovascular homeostasis, controlling vascular function and reducing fibrosis in multiple pathological conditions. Recently, initial studies have shown that Apelin, acting through the APJ receptor, also modulates penile erection, however, the role of this system on penile structure and intracorporal collagen remodeling has not been investigated yet. AIMS: Here we sought to investigate the effect of chronic Apelin treatment on the corpus cavernosum structure of hyperchOlesterolemic mice. METHODS: Apolipoprotein gene-deleted (ApoE-/-) mice were fed with a Western diet for 11 weeks and received Apelin-13 (2 mg/kg/day) or vehicle during the last 3 weeks. Penile samples were obtained for histological and biochemical analyses to assess the intracorporal collagen content and key proteins expression. Furthermore, the effect of Apelin-13 was evaluated in cultured NIH3T3 mouse fibroblasts stimulated with TGF-ß. OUTCOME: Local expression of Apelin-13 in mouse corpus cavernosum and its protective effect against fibrosis. RESULTS: Apelin and APJ receptor were expressed (gene and protein) within the corpus cavernosum of ApoE-/- mice, indicating a local modulation of the Apelin system. Interestingly, 3 weeks of Apelin-13 treatment strongly reduced intracavernosal collagen content. In addition, Apelin-13 enhanced total matrix metalloproteinase (MMP) activity in the mice penis, which was associated with an increased protein expression of MMP-1, MMP-3, MMP-8, and MMP-9, while tissue inhibitor of metalloproteinase were unaltered. These beneficial actions were not associated with changes in nNOS or eNOS protein expression, intracavernosal reactive oxygen species content, or atherosclerotic plaque deposition. Additionally, in cultured fibroblast, Apelin-13 inhibited TGF-ß-induced fibroblast to myofibroblast differentiation and collagen production, possibly through the activation of ERK1/2 kinase. CLINICAL TRANSLATION: These results point out Apelin/APJ system as a potential target to treat intracavernosal fibrosis-related disorders. STRENGTH & LIMITATIONS: These results provide the first evidence of the Apelin system's positive role on erectile tissue structure/remodeling. Nevertheless, additional functional study addressing erectile response would bring extended validation regarding the relevance of such effect. CONCLUSION: These results suggest a local modulation of the Apelin system within the corpus cavernosum. Remarkably, Apelin-13 reduced intracavernosal fibrosis in hypercholesterolemic mice by: (i) enhancing MMPs expression and activity; and (ii) inhibiting fibroblast differentiation into myofibroblast. Altogether, these results suggest an essential protective role of Apelin, indicating Apelin/APJ system as a promising candidate for the development of fibrosis-associated erectile dysfunction treatments. Sturny M, Anguenot L Costa-Fraga FP, et al. Apelin-13 Protects Corpus Cavernosum Against Fibrosis Induced by High-Fat Diet in an MMP-Dependent Mechanism. J Sex Med 2021;18:875-888.


Assuntos
Dieta Hiperlipídica , Disfunção Erétil , Animais , Apelina , Dieta Hiperlipídica/efeitos adversos , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Disfunção Erétil/prevenção & controle , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Metaloproteinases da Matriz , Camundongos , Células NIH 3T3 , Ereção Peniana , Pênis
9.
Molecules ; 26(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576963

RESUMO

X-ray structural determinations and computational studies were used to investigate halogen interactions in two halogenated oxindoles. Comparative analyses of the interaction energy and the interaction properties were carried out for Br···Br, C-H···Br, C-H···O and N-H···O interactions. Employing Møller-Plesset second-order perturbation theory (MP2) and density functional theory (DFT), the basis set superposition error (BSSE) corrected interaction energy (Eint(BSSE)) was determined using a supramolecular approach. The Eint(BSSE) results were compared with interaction energies obtained by Quantum Theory of Atoms in Molecules (QTAIM)-based methods. Reduced Density Gradient (RDG), QTAIM and Natural bond orbital (NBO) calculations provided insight into possible pathways for the intermolecular interactions examined. Comparative analysis employing the electron density at the bond critical points (BCP) and molecular electrostatic potential (MEP) showed that the interaction energies and the relative orientations of the monomers in the dimers may in part be understood in light of charge redistribution in these two compounds.

10.
J Cell Physiol ; 235(5): 4631-4642, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31637716

RESUMO

To better address whether the long noncoding RNAs (lncRNAs) HOTAIR and HOTTIP are mechanosensitive genes, they were investigated in differentially challenged endothelial cells with respect to a circuit of tensional forces, considering the performance of both arterial and venous endothelial cells. We subjected arterial- and venous-obtained endothelial cells to a circuit of tensional forces within a shear stress model in vitro. Real-time quantitative polymerase chain reaction analysis indicated that microRNA (miRNA)-related processing machinery is significantly required in shear stressed arterial endothelial cell metabolism, which orchestrates miRNA (small noncoding RNA) involvement, and their involvement suggests lncRNA involvement. Of lncRNAs HOTAIR and HOTTIP, only HOTAIR was mechanosensitive considering both arterial and venous endothelial cells, presenting a positive correlation between methylation signature and gene expression. Thereafter, using bioinformatics tools, lncRNA HOTAIR was predicted to modulate miRNA185, miRNA-21, and miRNA23b downregulation. We compared the values of gene expression with a Pearson's correlation test, and expected correlations were observed for miRNA185 (r = 0.8664), miRNA-21 (r = 0.8605), and miRNA23b (0.9128). Taken together, these findings clearly show that lncRNA HOTAIR responds to the shear stress and emerges as a novel mechanosensitive gene in endothelial cells. Altogether, this understanding of mechanosensitive transcriptional and posttranscriptional control involving HOTAIR can also lead to new forms of therapeutic intervention for various diseases, as well as new strategies for tissue engineering and regenerative medicine.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Mecanotransdução Celular , RNA Longo não Codificante/metabolismo , Células Cultivadas , Metilação de DNA , Epigênese Genética , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Estresse Mecânico
11.
J Cell Physiol ; 235(6): 5256-5269, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31858593

RESUMO

Modifications on shear stress-based mechanical forces are associated with pathophysiological susceptibility and their effect on endothelial cells (EC) needs to be better addressed looking for comprehending the cellular and molecular mechanisms. This prompted us to better evaluate the effects of shear stress in human primary venous EC obtained from the umbilical cord, using an in vitro model to mimic the laminar blood flow, reaching an intensity 1-4 Pa. First, our data shows there is a significant up-expression of phosphatidylinositol 3-kinase (PI3K) in shear-stressed cells culminating downstream with an up-phosphorylation of AKT and up-expression of MAPK-ERK, concomitant to a dynamic cytoskeleton rearrangement upon integrin subunits (α4 and ß 3) requirements. Importantly, the results show there is significant involvement of nitric oxide synthase (eNOS), nNOS, and vascular endothelial growth factors receptor 2 (VEGFR2) in shear-stressed EC, while cell cycle-related events seem to being changed. Additionally, although diminution of 5-hydroxymethylcytosine in shear-stressed EC, suggesting a global repression of genes transcription, the promoters of PI3K and eNOS genes were significantly hydroxymethylated corroborating with their respective transcriptional profiles. Finally, to better address, the pivotal role of PI3K in shear-stressed EC we have revisited these biological issues by wortmannin targeting PI3K signaling and the data shows a dependency of PI3K signaling in controlling the expression of VGFR1, VGFR2, VEGF, and eNOS, once these genes were significantly suppressed in the presence of the inhibitor, as well as transcripts from Ki67 and CDK2 genes. Finally, our data still shows a coupling between PI3K and the epigenetic landscape of shear-stressed cells, once wortmannin promotes a significant suppression of ten-11 translocation 1 (TET1), TET2, and TET3 genes, evidencing that PI3K signaling is a necessary upstream pathway to modulate TET-related genes. In this study we determined the major mechanotransduction pathway by which blood flow driven shear stress activates PI3K which plays a pivotal role on guaranteeing endothelial cell phenotype and vascular homeostasis, opening novel perspectives to understand the molecular basis of pathophysiological disorders related with the vascular system.


Assuntos
Mecanotransdução Celular/genética , Óxido Nítrico Sintase/genética , Fosfatidilinositol 3-Quinase/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Wortmanina/farmacologia , Indutores da Angiogênese/farmacologia , Proteínas de Ligação a DNA , Dioxigenases , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Mecanotransdução Celular/efeitos dos fármacos , Oxigenases de Função Mista , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo III/genética , Fosfatidilinositol 3-Quinase/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-akt/genética , Resistência ao Cisalhamento/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Mecânico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
12.
J Sex Med ; 17(11): 2129-2140, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943375

RESUMO

BACKGROUND: The renin-angiotensin system (RAS) plays an important role in erectile function. The RAS contains 2 major axes: one deleterious, composed of ACE-Ang II-AT1 receptor, and another protective, composed of ACE2-Ang-(1-7)-Mas receptor. While aging is a well-known cause for development of male sexual disorders, little is known about local regulation of the RAS in age-related erectile dysfunction (ED). AIM: The present study aimed to assess regulation of the RAS in aging-associated ED rat model and evaluate possible options for disease management through pharmacological modulation of the RAS. METHODS: Penile tissues were harvested from 3-, 12-, and 24-month-old Wistar rats. Local expression of major RAS components and ED markers was measured by RT-PCR. Protein expression of RAS components was assessed by western blot. Collagen deposition was measured by Sirius Red and immunohistochemical staining. Evaluation of collagen content was also performed in penile sections of Mas-knockout mice by Sirius Red and Masson's trichrome stainings. Finally, the effect of Ang-(1-7) pretreatment on TGF-ß-induced myofibroblast activation was studied in primary cavernosal and immortalized fibroblasts. OUTCOMES: Experimental results highlighted the essential role of the RAS in modulation of cavernosal fibrosis. RESULTS: The present study demonstrates local expression of angiotensinogen mRNA alongside with major RAS components, which suggests local autonomous functioning of the RAS within penile tissue. Gene expression analysis revealed strong positive correlation between ACE-Ang II-AT1 axis with markers for inflammation and fibrosis. While corpus cavernosum from 24-month-old rats was characterized by increased collagen deposition, protein expression of ACE, AT1, and Mas was shown to be upregulated in the penile tissue of this group. At the same time, penile sections from Mas-knockout mice (FVB/N background) were also shown to have increased collagen deposition. Finally, it was demonstrated that Ang-(1-7) treatment of primary cavernosal and immortalized fibroblasts was able to alleviate TGF-ß-induced fibroblast-to-myofibroblast transition. CLINICAL TRANSLATION: The present study suggests Ang-(1-7) treatment as a possible strategy for pharmacological management of fibrosis-associated ED in aging. STRENGTHS & LIMITATIONS: The link between the RAS and penile fibrosis, indicated by a holistic screening of different ED markers, was confirmed by in vivo and in vitro data. However, results, presented in the manuscript, need to be further reinforced by human data. Important to note, the main goal of the study was to characterize RAS regulation in aging condition rather than state any causal relationships. CONCLUSION: Present study characterizes RAS regulation in aging-associated ED and indicates its important role in cavernosal fibrosis. Bragina ME, Costa-Fraga F, Sturny M, et al. Characterization of the Renin-Angiotensin System in Aged Cavernosal Tissue and its Role in Penile Fibrosis. J Sex Med 2020;17:2129-2140.


Assuntos
Induração Peniana , Sistema Renina-Angiotensina , Idoso , Angiotensina I , Angiotensina II/metabolismo , Animais , Fibrose , Humanos , Masculino , Camundongos , Ereção Peniana , Fragmentos de Peptídeos , Peptidil Dipeptidase A/metabolismo , Ratos , Ratos Wistar
13.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906775

RESUMO

Platelets play a crucial role in the immunological response and are involved in the pathological settings of vascular diseases, and their adhesion to the extracellular matrix is important to bring leukocytes close to the endothelial cells and to form and stabilize the thrombus. Currently there are several methods to study platelet adhesion; however, the optimal parameters to perform the assay vary among studies, which hinders their comparison and reproducibility. Here, a standardization and validation of a fluorescence-based quantitative adhesion assay to study platelet-ECM interaction in a high-throughput screening format is proposed. Our study confirms that fluorescence-based quantitative assays can be effectively used to detect platelet adhesion, in which BCECF-AM presents the highest sensitivity in comparison to other dyes.


Assuntos
Imagem Óptica/métodos , Adesividade Plaquetária/fisiologia , Plaquetas/fisiologia , Células Endoteliais , Endotélio Vascular , Matriz Extracelular/fisiologia , Fluorescência , Humanos , Imagem Óptica/normas , Ativação Plaquetária , Padrões de Referência , Reprodutibilidade dos Testes , Trombose
14.
Carcinogenesis ; 40(12): 1514-1524, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31099823

RESUMO

The transformation of normal colonic epithelium to colorectal cancer (CRC) involves a relatively ordered progression, and understanding the molecular alterations involved may aid rational design of strategies aimed at preventing or counteracting disease. Homeobox A9 (HOXA9) is an oncogene in leukemia and has been implicated in CRC pathology, although its role in disease etiology remains obscure at best. We observe that HOXA9 expression is increased in colonic adenomas compared with location-matched healthy colon epithelium. Its forced expression results in dramatic genetic and signaling changes, with increased expression of growth factors IGF1 and FLT3, super-activity of the AKT survival pathway and a concomitant increase in compartment size. Furthermore, a reduced mRNA expression of the epithelial to mesenchymal transition marker N-cadherin as well as reduced activity of the actin cytoskeletal mediator PAK was seen, which is in apparent agreement with an observed reduced migratory response in HOXA9-overexpressing cells. Thus, HOXA9 appears closely linked with adenoma growth while impairing migration and metastasis and hence is both a marker and driver of premalignant polyp growth. Colonic polyps grow but remain premalignant for up to decades. Here, we show that HOXA9 drives growth in premalignant polyps, but simultaneously prevents further transformation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/patologia , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Homeodomínio/metabolismo , Lesões Pré-Cancerosas/patologia , Idoso , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/metabolismo , Pólipos do Colo/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/metabolismo
15.
J Cell Physiol ; 234(5): 6382-6396, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30238981

RESUMO

Whereas endothelial responses to shear stress are well-characterized, the cell physiological effects of shear stress in smooth muscle cells (SMCs) remain largely obscure. As SMCs are directly challenged by shear stress after endothelial denuding injury following procedures such as angioplasty or endarterectomy, characterization of these responses represents an important scientific question. Hence we decided to contrast cytoskeletal reorganization, epigenetic reprogramming, signaling transduction, and changes in miRNA (miRs) profiles in primary human aortic smooth muscle cells (AoSMCs) between unstressed cells and cells exposed to shear stress. We observed that shear stress-provoked reorganization of the actin cytoskeleton in an apparently Cofilin-dependent fashion and which related to altered integrin signaling, apparently caused by remodeling of the extracellular matrix. The latter appeared a downstream effect of increased expression of matrix metalloproteinases and downregulation of tissue metalloproteinase inhibitor 1 (TIMP1) protein levels. In turn, these effects related to shear stress-provoked changes in expression and nuclear localization of the epigenetic regulators demethylases TET1, TET2, DNMT1, DNMT3A and DNMT3B, HDAC6, and SIRT1. Accordingly, TIMP1 promotor CpG hypomethylation was a prominent effect, and resulted in a significant increase in TIMP1 transcription, which may also have related increased expression of miRs involved in modulating TIMP1 translation. Thus epigenetic-reprogramming of TIMP1 emerges as critical element in smooth muscle responses to mechanical signals and as epigenetic machinery is amendable to pharmacological manipulation, this pathway may have important clinical consequences.


Assuntos
Citoesqueleto de Actina/metabolismo , Adaptação Fisiológica/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Linhagem Celular , Epigênese Genética , Humanos , Estresse Mecânico
16.
J Cell Physiol ; 234(4): 4140-4153, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30171612

RESUMO

The role of apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) in bone healing remains to be understood. To address this issue, we investigated the requirement of inflammasome-related genes in response to bone morphogenetic protein 7 (BMP7)-induced osteoblast differentiation in vitro. To validate the importance of ASC on osteogenesis, we subjected wild-type (WT) and ASC knockout C57BL/6 mice (ASC KO) to tibia defect to evaluate the bone healing process (up to 28 days). Our in vitro data showed that there is an involvement of ASC during BMP7-induced osteoblast differentiation, concomitant to osteogenic biomarker expression. Indeed, primary osteogenic cells from ASC KO presented a lower osteogenic profile than those obtained from WT mice. To validate this hypothesis, we evaluated the bone healing process of tibia defects on both WT and ASC KO mice genotypes and the ASC KO mice were not able to fully heal tibia defects up to 28 days, whereas WT tibia defects presented a higher bone de novo volume at this stage, evidencing ASC as an important molecule during osteogenic phenotype. In addition, we have shown a higher involvement of runt-related transcription factor 2 in WT sections during bone repair, as well as circulating bone alkaline phosphatase isoform when both were compared with ASC KO mice behavior. Altogether, our results showed for the first time the involvement of inflammasome during osteoblast differentiation and osteogenesis, which opens new avenues to understand the pathways involved in bone healing.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Diferenciação Celular , Consolidação da Fratura , Osteoblastos/metabolismo , Osteogênese , Tíbia/metabolismo , Fraturas da Tíbia/metabolismo , Células 3T3 , Animais , Proteína Morfogenética Óssea 7/farmacologia , Proteínas Adaptadoras de Sinalização CARD/deficiência , Proteínas Adaptadoras de Sinalização CARD/genética , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteogênese/efeitos dos fármacos , Transdução de Sinais , Tíbia/patologia , Tíbia/fisiopatologia , Fraturas da Tíbia/genética , Fraturas da Tíbia/patologia , Fraturas da Tíbia/fisiopatologia , Fatores de Tempo
17.
Platelets ; 30(5): 563-571, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30183501

RESUMO

Despite significant advances in the treatment of cardiovascular diseases, antiplatelet therapies are still associated with a high risk of hemorrhage. In order to develop new drugs, methods to measure platelet function must be adapted for the high-throughput screening (HTS) format. Currently, all assays capable of assessing platelet function are either expensive, complex, or not validated, which makes them unsuitable for drug discovery. Here, we propose a simple, low-cost, and high-throughput-compatible platelet function assay, validated for the 384-well plate. In the proposed assay, agonist-induced platelet activity was assessed by three different methods: (i) measurement of light absorbance, which decreases with platelet aggregation; (ii) luminescence measurement, based on ATP release from activated platelets and luciferin-luciferase reaction; and (iii) automated bright-field microscopy of the wells and further quantification of platelet image area, described here for the first time. Brightfield imaging results were validated by demonstrating the similarity of dose-response curves obtained with absorbance and luminescence measurements after stimulating platelets, pre-incubated with prostaglandin E1 or tirofiban, and demonstrating the similarity of dose-response curves obtained with agonists. Assay quality was confirmed using the Z'-factor, a statistical parameter used to validate the robustness and suitability of an HTS assay. The results showed that, under high rotations per minute (1200 RPM), an acceptable Z'-factor score is reached for absorbance measurements (Z'-factor - 0.58) and automated brightfield imaging (Z'-factor - 0.52), without the need of replicates, while triplicates must be used to achieve an acceptable Z'-factor score (0.54) for luminescence measurements. Using low platelet concentration (4 × 104/µl - 10 µl), the brightfield imaging test was further validated using washed platelets. Furthermore, drug screening was performed with compounds selected by structure-based virtual screening. Taken together, this study presents an optimized and validated assay for HTS to be used as a tool for antiplatelet drug discovery.


Assuntos
Ensaios de Triagem em Larga Escala , Testes de Função Plaquetária , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/normas , Humanos , Testes de Função Plaquetária/métodos , Testes de Função Plaquetária/normas , Plasma Rico em Plaquetas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Sensors (Basel) ; 19(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146339

RESUMO

In the fog computing paradigm, fog nodes are placed on the network edge to meet end-user demands with low latency, providing the possibility of new applications. Although the role of the cloud remains unchanged, a new network infrastructure for fog nodes must be created. The design of such an infrastructure must consider user mobility, which causes variations in workload demand over time in different regions. Properly deciding on the location of fog nodes is important to reduce the costs associated with their deployment and maintenance. To meet these demands, this paper discusses the problem of locating fog nodes and proposes a solution which considers time-varying demands, with two classes of workload in terms of latency. The solution was modeled as a mixed-integer linear programming formulation with multiple criteria. An evaluation with real data showed that an improvement in end-user service can be obtained in conjunction with the minimization of the costs by deploying fewer servers in the infrastructure. Furthermore, results show that costs can be further reduced if a limited blocking of requests is tolerated.

19.
Eur J Clin Invest ; 48(3)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29336478

RESUMO

BACKGROUND: Apelin is an endogenous peptidergic system which modulates cardiovascular function. Recent studies pointed out a fundamental contribution of apelin on atherosclerosis development; however, such reports revealed contradictory data, and to date, it is difficult to accurately define a beneficial or deleterious role. To better understand apelin function on atherosclerosis, we aimed to investigate apelin-13 treatment effects on atherosclerotic plaques composition. DESIGN: Apolipoprotein E gene-deleted mice were fed on Western-type diet for 11 weeks. Atherosclerotic plaque formation was induced in the carotid artery by a shear stress modifier device, which exposes the same vessel to distinct patterns of shear stress enabling the formation of plaques with different composition. Mice were treated with apelin-13 (2 mg kg-1 day-1 ) or vehicle for the last 3 weeks. RESULTS: Apelin-13 treatment did not alter the lipid content of low shear stress- and oscillatory shear stress-induced plaques in the carotid. However, apelin-13 greatly ameliorated plaque stability by increasing intraplaque collagen content and reducing MMP-9 expression. Furthermore, apelin-13 decreased the infiltration of inflammatory cells (neutrophil and macrophage) and intraplaque reactive oxygen species content. Interestingly, apelin-13 treatment reduced total cholesterol, LDL levels and free fatty acid serum levels, while HDL, triglycerides serum levels were not significantly changed. CONCLUSIONS: Apelin-13 treatment for 3 weeks did not alter the lesion size, but it significantly enhanced the stable phenotype of atherosclerotic plaques and improved serum lipid profile. These results indicate that activation of apelin system decreases plaque vulnerability.


Assuntos
Apelina/farmacologia , Doenças das Artérias Carótidas/fisiopatologia , Placa Aterosclerótica/fisiopatologia , Animais , Doenças das Artérias Carótidas/metabolismo , Colágeno/metabolismo , Dieta Ocidental , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica/metabolismo , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo
20.
Eur J Clin Invest ; 47(2): 117-128, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27930810

RESUMO

BACKGROUND: Neutrophil-mediated inflammation was recently identified as an active contributor to athero-progression. Therapeutic strategies inhibiting neutrophil degranulation or recruitment were hypothesized to positively impact on plaque vulnerability. In this study, we investigated whether treatment with the recently discovered agonist of the Mas-related G-coupled receptor type D (MrgD) alamandine would impact on neutrophil degranulation in vivo and in vitro. MATERIALS AND METHODS: Fifteen-week-old ApoE-/- mice were fed with a Western-type diet for an additional 11 weeks. After the first 2 weeks of diet, mice were surgically implanted with a carotid 'cast' device that alters the blood shear stress and induces different carotid plaque phenotypes. During the last 4 weeks before euthanasia, mice were randomly assigned to subcutaneously receive vehicle (NaCl 0·15 M) or alamandine (24 µg/kg/h) by micropump. For in vitro experiments, neutrophils were obtained after thioglycollate intraperitoneal injection in ApoE-/- mice. RESULTS: Treatment with alamandine was well-tolerated, but failed to affect lipid, macrophage, neutrophil or collagen content within carotid and aortic root plaques. Also, treatment with alamandine did not affect Th-cell polarization in lymphoid organs. Conversely, alamandine administration was associated with a reduction in serum levels of neutrophil granule enzymes, such as MMP-9 and MPO as well as MMP-9 content within aortic root plaques. In vitro, preincubation with alamandine dose-dependently abrogated PMA-induced neutrophil degranulation of MMP-9 and MPO. CONCLUSION: These results suggest that treatment with the MrgD agonist alamandine led to a reduced release of neutrophil granule products, potentially interfering with pro-atherosclerotic neutrophil activation.


Assuntos
Aterosclerose/fisiopatologia , Degranulação Celular/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Placa Aterosclerótica/fisiopatologia , Animais , Aorta Torácica/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Artérias Carótidas/efeitos dos fármacos , Progressão da Doença , Técnicas In Vitro , Metabolismo dos Lipídeos/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Knockout , Neutrófilos/fisiologia , Peroxidase/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Distribuição Aleatória , Receptores Acoplados a Proteínas G/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA