Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mar Drugs ; 21(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37504925

RESUMO

Emulsion-based systems that combine natural polymers with vegetable oils have been identified as a promising research avenue for developing structures with potential for biomedical applications. Herein, chitosan (CHT), a natural polymer, and virgin coconut oil (VCO), a resource obtained from coconut kernels, were combined to create an emulsion system. Phytantriol-based cubosomes encapsulating sodium diclofenac, an anti-inflammatory drug, were further dispersed into CHT/VCO- based emulsion. Then, the emulsions were frozen and freeze-dried to produce scaffolds. The scaffolds had a porous structure ranging from 20.4 to 73.4 µm, a high swelling ability (up to 900%) in PBS, and adequate stiffness, notably in the presence of cubosomes. Moreover, a well-sustained release of the entrapped diclofenac in the cubosomes into the CHT/VCO-based system, with an accumulated release of 45 ± 2%, was confirmed in PBS, compared to free diclofenac dispersed (80 ± 4%) into CHT/VCO-based structures. Overall, the present approach opens up new avenues for designing porous biomaterials for drug delivery through a sustainable pathway.


Assuntos
Quitosana , Emulsões , Diclofenaco , Óleos de Plantas/química , Óleo de Coco/química
2.
Molecules ; 28(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298999

RESUMO

Current management for diabetes has stimulated the development of versatile 3D-based hydrogels as in vitro platforms for insulin release and as support for the encapsulation of pancreatic cells and islets of Langerhans. This work aimed to create agarose/fucoidan hydrogels to encapsulate pancreatic cells as a potential biomaterial for diabetes therapeutics. The hydrogels were produced by combining fucoidan (Fu) and agarose (Aga), marine polysaccharides derived from the cell wall of brown and red seaweeds, respectively, and a thermal gelation process. The agarose/fucoidan (AgaFu) blended hydrogels were obtained by dissolving Aga in 3 or 5 wt % Fu aqueous solutions to obtain different proportions (4:10; 5:10, and 7:10 wt). The rheological tests on hydrogels revealed a non-Newtonian and viscoelastic behavior, while the characterization confirmed the presence of the two polymers in the structure of the hydrogels. In addition, the mechanical behavior showed that increasing Aga concentrations resulted in hydrogels with higher Young's modulus. Further, the ability of the developed materials to sustain the viability of human pancreatic cells was assessed by encapsulation of the 1.1B4HP cell line for up to 7 days. The biological assessment of the hydrogels revealed that cultured pancreatic beta cells tended to self-organize and form pseudo-islets during the period studied.


Assuntos
Diabetes Mellitus , Hidrogéis , Humanos , Sefarose/química , Hidrogéis/farmacologia , Hidrogéis/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Diabetes Mellitus/tratamento farmacológico
3.
An Acad Bras Cienc ; 93(1): e20191133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909820

RESUMO

Vriesea bahiana, Hohenbergia castellanosii and Encholirium spectabile are endemic Brazilian species that are considered endemic or endangered. Development of strategies to conserve these species is important to prevent irreversible genetic erosion. The objective of this study was to evaluate the post-seminal development and seed cryopreservation of three endemic or in danger of extinction bromeliad species in Brazil, to obtain a protocol that can safeguard the genetic variability of these species. In the seed cryopreservation assay, we evaluated five desiccation periods. The seeds in the cryotubes were taken from the desiccator and immediately plunged into liquid nitrogen. For the analysis of post-seminal development, seeds in different germination stages were collected and evaluated by light and scanning electron microscopy. Vriesea bahiana seeds frozen in liquid nitrogen presented almost 100% germination, indicating dormancy break of this species. Vriesea bahiana can be cryopreserved with 5.9% water content after being dried for 24 hours. Hohenbergia castellanosii and E. spectabile seeds did not need to be desiccated before being cryopreserved. The most relevant morphological traits for differentiation of genera and subfamilies of Bromeliaceae are the shape and type of seed appendages. In this study, all three species presented well-differentiated size and shape of their structures.


Assuntos
Dessecação , Germinação , Brasil , Criopreservação , Sementes
4.
Mar Drugs ; 18(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629815

RESUMO

Marine resources have considerable potential to develop high-value materials for applications in different fields, namely pharmaceutical, environmental, and biomedical. Despite that, the lack of solubility of marine-derived polymers in water and common organic solvents could restrict their applications. In the last years, ionic liquids (ILs) have emerged as platforms able to overcome those drawbacks, opening many routes to enlarge the use of marine-derived polymers as biomaterials, among other applications. From this perspective, ILs can be used as an efficient extraction media for polysaccharides from marine microalgae and wastes (e.g., crab shells, squid, and skeletons) or as solvents to process them in different shapes, such as films, hydrogels, nano/microparticles, and scaffolds. The resulting architectures can be applied in wound repair, bone regeneration, or gene and drug delivery systems. This review is focused on the recent research on the applications of ILs as processing platforms of biomaterials derived from marine polymers.


Assuntos
Organismos Aquáticos/química , Materiais Biocompatíveis , Líquidos Iônicos , Polímeros , Polissacarídeos
5.
Chem Soc Rev ; 48(15): 4317-4335, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31225558

RESUMO

Biocompatible ionic liquids (Bio-ILs) are an eco- and bio-friendly family of ionic liquids (ILs) useful in applications ranging from the electrochemical to the biomedical fields. The most promising strategies for their synthesis involve using molecules from bio-renewable sources as a basis for both the anionic and cationic counterparts of the Bio-ILs structure. Several studies have been conducted on Bio-IL properties, including their impact on the environment and health safety. Herein, we review progress and strategies towards the synthesis of Bio-ILs and address their ecotoxicological and biological impact. Furthermore, we discuss the impact of using these compounds in a diverse range of applications, with some insights toward their use in the development of improved technologies.


Assuntos
Materiais Biocompatíveis/farmacologia , Tecnologia Biomédica , Líquidos Iônicos/farmacologia , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Humanos , Líquidos Iônicos/síntese química , Líquidos Iônicos/química
6.
J Mater Sci Mater Med ; 29(3): 21, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396700

RESUMO

Oral administration of drugs presents important limitations, which are frequently not granted the importance that they really have. For instance, hepatic metabolism means an important drug loss, while some patients have their ability to swell highly compromised (i.e. unconsciousness, cancer…). Sublingual placement of an accurate Pharmaceutical Dosage Form is an attractive alternative. This work explores the use of the ß-chitosan membranes, from marine industry residues, composed with marine sediments for dual sublingual drug delivery. As proof of concept, the membranes were loaded with a hydrophilic (gentamicin) and a hydrophobic (dexamethasone) drug. The physico-chemical and morphological characterization indicated the successful incorporated of diatomaceous earth within the chitosan membranes. Drug delivery studies showed the potential of all formulations for the immediate release of hydrophilic drugs, while diatomaceous earth improved the loading and release of the hydrophobic drug. These results highlight the interest of the herein developed membranes for dual drug delivery.


Assuntos
Quitosana/química , Terra de Diatomáceas/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Administração Sublingual , Animais , Decapodiformes , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Gentamicinas/administração & dosagem , Gentamicinas/farmacocinética , Humanos , Teste de Materiais , Membranas Artificiais , Microscopia de Força Atômica , Termogravimetria , Molhabilidade , Difração de Raios X
7.
Polymers (Basel) ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475324

RESUMO

In recent years, there has been a growing interest in developing smart drug delivery systems based on natural resources combined with stimulus-sensitive elements. This trend aims to formulate innovative and sustainable delivery platforms tailored for topical applications. This work proposed the use of layer-by-layer (LbL) methodology to fabricate biocompatible photo-responsive multilayer systems. These systems are composed of a polyoxometalate inorganic salt (POM) ([NaP5W30O110]14-) and a natural origin polymer, chitosan (CHT). Curcumin (CUR), a natural bioactive compound, was incorporated to enhance the functionality of these systems during the formation of hollow capsules. The capsules produced, with sizes between 2-5µm (SEM), were further dispersed into CHT/VCO (virgin coconut oil) emulsion solutions that were casted into molds and dried at 37 °C for 48 h. The system presented a higher water uptake in PBS than in acidic conditions, still significantly lower than that earlier reported to other CHT/VCO-based systems. The drug release profile is not significantly influenced by the medium pH reaching a maximum of 37% ± 1% after 48 h. The antioxidant performance of the designed structures was further studied, suggesting a synergistic beneficial effect resulting from CUR, POM, and VCO individual bioactivities. The increased amount of those excipients released to the media over time promoted an increase in the antioxidant activity of the system, reaching a maximum of 38.1% ± 0.1% after 48 h. This work represents a promising step towards developing advanced, sustainable drug delivery systems for topical applications.

8.
Acta Biomater ; 173: 298-313, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979636

RESUMO

3D bioprinting enables the fabrication of biomimetic cell-laden constructs for cartilage regeneration, offering exclusive strategies for precise pharmacological screenings in osteoarthritis (OA). Synovial inflammation plays a crucial role in OA's early stage and progression, characterized by the increased of the synovial pro-inflammatory mediators and cytokines and chondrocyte apoptosis. Therefore, there is an urgent need to develop solutions for effectively managing the primary events associated with OA. To address these issues, a phenolic-based biocompatible ionic liquid approach, combining alginate (ALG), acemannan (ACE), and cholinium caffeate (Ch[Caffeate]), was used to produce easily printable bioinks. Through the use of this strategy 3D constructs with good printing resolution and high structural integrity were obtained. The encapsulation of chondrocytes like ATDC5 cells provided structures with good cell distribution, viability, and growth, for up to 14 days. The co-culture of the constructs with THP-1 macrophages proved their ability to block pro-inflammatory cytokines (TNF-α and IL-6) and mediators (GM-CSF), released by the cultured cells. Moreover, incorporating the biocompatible ionic liquid into the system significantly improved its bioactive performance without compromising its physicochemical features. These findings demonstrate that ALG/ACE/Ch[Caffeate] bioinks have great potential for bioengineering cartilage tissue analogs. Besides, the developed ALG/ACE/Ch[Caffeate] bioinks protected encapsulated chondrocyte-like cells from the effect of the inflammation, assessed by a co-culture system with THP-1 macrophages. These results support the increasing use of Bio-ILs in the biomedical field, particularly for developing 3D bioprinting-based constructs to manage inflammatory-based changes in OA. STATEMENT OF SIGNIFICANCE: Combining natural resources with active biocompatible ionic liquids (Bio-IL) for 3D printing is herein presented as an approach for the development of tools to manage inflammatory osteoarthritis (OA). We propose combining alginate (ALG), acemannan (ACE), and cholinium caffeate (Ch[Caffeate]), a phenolic-based Bio-IL with anti-inflammatory and antioxidant features, to produce bioinks that allow to obtain 3D constructs with good printing resolution, structural integrity, and that provide encapsulated chondrocyte-like cells good viability. The establishment of a co-culture system using the printed constructs and THP-1-activated macrophages allowed us to study the encapsulated chondrocyte-like cells behaviour within an inflammatory scenario, a typical event in early-stage OA. The obtained outcomes support the beneficial use of Bio-ILs in the biomedical field, particularly for the development of 3D bioprinting-based models that allow the monitoring of inflammatory-based events in OA.


Assuntos
Bioimpressão , Líquidos Iônicos , Osteoartrite , Humanos , Líquidos Iônicos/farmacologia , Citocinas , Osteoartrite/tratamento farmacológico , Inflamação , Anti-Inflamatórios/farmacologia , Alginatos/farmacologia , Alginatos/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Bioimpressão/métodos , Alicerces Teciduais/química
9.
Int J Biol Macromol ; 242(Pt 3): 125026, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244345

RESUMO

Combining biomacromolecules with green chemistry principles and clean technologies has proven to be an effective approach for drug delivery, providing a prolonged and sustained release of the encapsulated material. The current study investigates the potential of cholinium caffeate (Ch[Caffeate]), a phenolic-based biocompatible ionic liquid (Bio-IL) entrapped in alginate/acemannan beads, as a drug delivery system able to reduce local joint inflammation on osteoarthritis (OA) treatment. The synthesized Bio-IL has antioxidant and anti-inflammatory actions that, combined with biopolymers as 3D architectures, promote the entrapment and sustainable release of the bioactive molecules over time. The physicochemical and morphological characterization of the beads (ALC, ALAC0,5, ALAC1, and ALAC3, containing 0, 0.5, 1, and 3 %(w/v) of Ch[Caffeate], respectively) revealed a porous and interconnected structure, with medium pore sizes ranging from 209.16 to 221.30 µm, with a high swelling ability (up 2400 %). Ch[Caffeate] significantly improved the antioxidant activities of the constructs by 95 % and 97 % for ALAC1 and ALAC3, respectively, when compared to ALA (56 %). Besides, the structures provided the environment for ATDC5 cell proliferation, and cartilage-like ECM formation, supported by the increased GAGs in ALAC1 and ALAC3 formulations after 21 days. Further, the ability to block the secretion of pro-inflammatory cytokines (TNF-α and IL-6), from differentiated THP-1 was evidenced by ChAL-Ch[Caffeate] beads. These outcomes suggest that the established strategy based on using natural and bioactive macromolecules to develop 3D constructs has great potential to be used as therapeutic tools for patients with OA.


Assuntos
Líquidos Iônicos , Humanos , Antioxidantes/farmacologia , Alginatos/química , Sistemas de Liberação de Medicamentos
10.
Biomater Adv ; 134: 112720, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35589472

RESUMO

Vegetable oils have been suggested in polymer science as an environmentally friendly feedstock existing in abundance in nature, with worldwide availability and low cost. Although they have been widely explored as building blocks for polymers synthesis, their functional roles as owners of potent biomolecules are less unexplored. Their ancient biomolecules support natural biological roles such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor properties, which are considered a great promise for biomedical proposes. This comprehensive review provides an overview of grape, soybean, castor, sesame, olive vegetable oils where their native anti-inflammatory, anti-tumor, antioxidant, and antibacterial biological compounds bring health benefits that can be translated to the biomedical field. These plant oils are considered the most relevant for the molecular design of functional and high-performance biomaterials that can contribute to the reduction of carbon footprint. The representative examples of vegetable oil-derived biomaterials, their main composition, shape, and the processing technology will be covered and innovative strategies toward the development of new multifunctional polymeric materials for pharmacological patches, wound healing devices, drug carriers, and scaffolds for tissue engineering applications will be discussed.


Assuntos
Antioxidantes , Óleos de Plantas , Antibacterianos , Antioxidantes/farmacologia , Materiais Biocompatíveis/uso terapêutico , Azeite de Oliva , Óleos de Plantas/farmacologia , Polímeros/uso terapêutico
11.
J Biomater Sci Polym Ed ; 33(15): 1939-1954, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35699411

RESUMO

There is a current lack of fully efficient therapies for diabetes mellitus, a chronic disease where the metabolism of blood glucose is severely hindered by a deficit in insulin or cell resistance to this hormone. Therefore, it is crucial to develop new therapeutic strategies to treat this disease, including devices for the controlled delivery of insulin or encapsulation of insulin-producing cells. In this work, fucoidan (Fu) - a marine sulfated polysaccharide exhibiting relevant properties on reducing blood glucose and antioxidant and anti-inflammatory effects - was used for the development of versatile carriers envisaging diabetes advanced therapies. Fu was functionalized by methacrylation (MFu) using 8% and 12% (v/v) of methacrylic anhydride and further photocrosslinked using visible light in the presence of triethanolamine and eosin-y to produce hydrogel particles. Degree of methacrylation varied between 2.78 and 6.50, as determined by 1HNMR, and the produced particles have an average diameter ranging from 0.63 to 1.3 mm (dry state). Insulin (5%) was added to MFu solution to produce drug-loaded particles and the release profile was assessed in phosphate buffer solution (PBS) and simulated intestinal fluid (SIF) for 24 h. Insulin was released in a sustained manner during the initial 8 h, reaching then a plateau, higher in PBS than in SIF, indicating that lower pH favors drug liberation. Moreover, the ability of MFu particles to serve as templates for the culture of human pancreatic cells was assessed using 1.1B4 cell line during up to 7 days. During the culture period studied, pancreatic beta cells were proliferating, with a global viability over 80% and tend to form pseudo-islets, thus suggesting that the proposed biomaterial could be a good candidate as versatile carrier for diabetes treatment as they sustain the release of insulin and support pancreatic beta cells viability.


Assuntos
Diabetes Mellitus , Hidrogéis , Anidridos , Anti-Inflamatórios , Antioxidantes , Materiais Biocompatíveis , Glicemia , Diabetes Mellitus/tratamento farmacológico , Amarelo de Eosina-(YS) , Humanos , Hidrogéis/química , Insulina/química , Fosfatos , Polissacarídeos
12.
Acta Biomater ; 147: 168-184, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35580828

RESUMO

The combination of natural resources with biologically active biocompatible ionic liquids (Bio-IL) is presented as a combinatorial approach for developing tools to manage inflammatory diseases. Innovative biomedical solutions were constructed combining silk fibroin (SF) and Ch[Gallate], a Bio-IL with antioxidant and anti-inflammatory features, as freeze-dried 3D-based sponges. An evaluation of the effect of the Ch[Gallate] concentration (≤3% w/v) on the SF/Ch[Gallate] sponges was studied. Structural changes observed on the sponges revealed that the Ch[Gallate] presence positively affected the ß-sheet formation while not influencing the silk native structure, which was suggested by the FTIR and solid-state NMR results, respectively. Also, it was possible to modulate their mechanical properties, antioxidant activity and stability/degradation in an aqueous environment, by changing the Ch[Gallate] concentration. The architectures showed high water uptake ability and a weight loss that follows the controlled Ch[Gallate] release rate studied for 7 days. Furthermore, the sponges supported human adipose stem cells growth and proliferation, up to 7 days. TNF-α, IL-6 (pro-inflammatory) and IL-10 (anti-inflammatory) release quantification from a human monocyte cell line revealed a decrease in the pro-inflammatory cytokines concentrations in samples containing Ch[Gallate]. These outcomes encourage the use of the developed architectures as tissue engineering solutions, potentially targeting inflammation processes. STATEMENT OF SIGNIFICANCE: Combining natural resources with active biocompatible ionic liquids (Bio-IL) is herein presented as a combinatorial approach for the development of tools to manage inflammatory diseases. We propose using silk fibroin (SF), a natural protein, with cholinium gallate, a Bio-IL, with antioxidant and anti-inflammatory properties, to construct 3D-porous sponges through a sustainable methodology. The morphological features, swelling, and stability of the architectures were controlled by Bio-IL content in the matrices. The sponges were able to support human adipose stem cells growth and proliferation, and their therapeutic effect was proved by the blockage of TNF-α from activated and differentiated THP-1 monocytes. We believe that these bio-friendly and bioactive SF/Bio-IL-based sponges are effective for targeting pathologies with associated inflammatory processes.


Assuntos
Fibroínas , Líquidos Iônicos , Antioxidantes/farmacologia , Materiais Biocompatíveis/química , Fibroínas/química , Fibroínas/farmacologia , Ácido Gálico , Humanos , Seda/química , Engenharia Tecidual , Alicerces Teciduais/química , Fator de Necrose Tumoral alfa
13.
Polymers (Basel) ; 14(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746048

RESUMO

Oleogels are becoming an attractive research field, since they have recently been shown to be feasible for the food and pharmaceutical sectors and provided some insights into the biomedical area. In this work, edible oleogels were tailored through the combination of ethylcellulose (EC), a gelling agent, with virgin coconut oil (VCO), vegetable oil derived from coconut. The influence of the different EC and VCO ratios on the structural, physical, and thermal properties of the oleogels was studied. All EC/VCO-based oleogels presented a stable network with a viscoelastic nature, adequate structural stability, modulable stiffness, high oil-binding capability, antioxidant activity, and good thermal stability, evidencing the EC and VCO's good compatibility.

14.
Nanomedicine ; 7(6): 914-24, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21419875

RESUMO

The control of stem cell differentiation to obtain osteoblasts in vivo is still regarded as a challenge in stem-cell-based and bone-tissue engineering strategies. Biodegradable dexamethasone-loaded dendron-like nanoparticles (NPs) of carboxymethylchitosan/poly(amidoamine) dendrimer have been proposed as intracellular drug-delivery systems of bioactive molecules. In this study, combination of nanotechnology, stem-cell engineering and tissue engineering is proposed in pre-programming the fate of rat bone marrow stromal cells (RBMSCs) towards osteoblasts cells and development of new bone tissue, in vivo. This work demonstrated that the developed NPs were able to be taken up by RBMSCs, and exhibited a noncytotoxic behavior in vitro. The performance of the developed dendronlike NP system for the intracellular delivery of dexamethasone was investigated by seeding the engineered RBMSCs onto starch-polycaprolactone scaffolds ex vivo, and implanting subcutaneously in the back of Fischer 344/N rats (Syngeneic), in the absence of the typical osteogenic supplements. Favorable results were observed in vivo, thus suggesting that stem cell "tune-up" strategy can open up a new regenerative strategy for bone-tissue engineering. FROM THE CLINICAL EDITOR: In this study, a combination of nanotechnology, stem-cell engineering and tissue engineering is proposed in pre-programming the fate of rat bone marrow stromal cells (RBMSCs) towards osteoblasts cells and development of new bone tissue in vivo.


Assuntos
Anti-Inflamatórios/administração & dosagem , Células da Medula Óssea/citologia , Dexametasona/administração & dosagem , Nanopartículas/química , Osteoblastos/citologia , Osteogênese , Engenharia Tecidual/métodos , Animais , Transplante de Medula Óssea , Osso e Ossos/citologia , Quitosana/química , Dendrímeros/química , Masculino , Nanopartículas/ultraestrutura , Ratos , Ratos Endogâmicos F344 , Células Estromais/citologia , Células Estromais/transplante
15.
ACS Appl Bio Mater ; 4(5): 4000-4013, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006819

RESUMO

Green solvents such as ionic liquids (ILs) unlock possibilities for developing innovative biomedical and pharmaceutical solutions. ILs are the most investigated solvents for compound extractions, as reaction media and/or catalysts, and a desired eco-friendly solvent to process biomacromolecules for biomaterial production. Investigations demonstrate that the tunable nature and physicochemical features of ILs are also beneficial for building up delivery systems through their combination with bioactive compounds. Bioactive compounds from synthetic origins, like ibuprofen, ketoprofen, and natural sources such as curcumin, flavonoids, and polyphenols are essential starting points as preventive and therapeutic agents for treating diseases. Therefore, the association of those compounds with ILs opens up windows of opportunities in this research field. This Review assesses some of the main and important recent information and the current challenges concerning delivery platforms based on ILs combined with bioactive compounds of both natural and synthetic origins. Moreover, the chemistry, bioavailability, and biological functions of the main bioactive compounds used in the ILs-based delivery platforms are described. These data are presented and are discussed, together with the main delivery routes of the systems.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Líquidos Iônicos/química , Materiais Biocompatíveis/síntese química , Líquidos Iônicos/síntese química , Teste de Materiais , Tamanho da Partícula , Solventes/química
16.
Carbohydr Polym ; 257: 117601, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541636

RESUMO

The exploitation of natural origin macromolecules, as complex physical mixtures or drugs, increases in biomedical or tissue engineering (TE) solutions. Aloe Vera is a highly explored medicinal plant, from which the main polysaccharide is acemannan (ACE). The ACE combination with chitosan and alginate results in interactions that lead to mixed junction zones formation, predicting membrane functionality improvement. This work proposes the development and characterization of ACE-based blended films as a promising strategy to design a nature-derived bioactive platform. The results confirmed that stable complex polyelectrolyte structures were formed through different intermolecular interactions. The films present good dimensional stability, flexibility, an adequate swelling ability with mostly radial water uptake, and a sustainable ACE release to the medium. Positive biological performance of the ACE-based blended films with L929 cells also suggested that they can be applied in TE solutions, with the potential to act as bioactive topical platforms.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Mananas/química , Teste de Materiais , Alginatos/química , Aloe/química , Animais , Varredura Diferencial de Calorimetria , Quitosana/química , Concentração de Íons de Hidrogênio , Membranas Artificiais , Camundongos , Oscilometria , Plantas Medicinais , Polímeros/química , Polissacarídeos , Pós/química , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Engenharia Tecidual/métodos , Viscosidade
17.
Int J Biol Macromol ; 183: 695-706, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33932419

RESUMO

Implantation of biomaterials and hybrid constructs in tissue engineering approaches presents major limitations such as inflammatory reaction and the lack of vasculature integration. Therefore, new strategies are needed to enhance implant function, immune protection, and revascularization. In this work, we developed fibrous meshes composed of fucoidan (Fu), a sulfated polysaccharide extracted from brown algae, and polycaprolactone (PCL), a synthetic biodegradable polymer, using the airbrush technique. The chemical characterization by FTIR, EDS, and XPS confirmed the presence of the two polymers in the structure of airbrushed nanofibrous meshes (ANFM). Moreover, these nanofibrous exhibited good wettability and mechanical properties envisaging their application as templates for biomaterials and cell culture. The developed ANFM were directly cultured with human pulmonary microvascular endothelial (HPMEC-ST1.6R) cells for up to 7 days. Biological results demonstrated that ANFM comprising Fu promoted cellular attachment, spreading, and proliferation of human endothelial cells. The angiogenic potential of ANFM was further evaluated by onplantation of PCL and PCL/Fu ANFM in chick chorioallantoic membrane (CAM). In ovo and ex ovo results showed that the incorporation of Fu increased the pro-angiogenic potential of ANFM. Altogether, the results suggest that airbrush biocomposite meshes could be used as a biomaterial substrate to promote vascularization.


Assuntos
Indutores da Angiogênese/farmacologia , Membrana Corioalantoide/irrigação sanguínea , Pulmão/irrigação sanguínea , Poliésteres/química , Polissacarídeos/farmacologia , Indutores da Angiogênese/química , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Microvasos/citologia , Microvasos/efeitos dos fármacos , Nanofibras , Polissacarídeos/química , Telas Cirúrgicas , Engenharia Tecidual
18.
Biomed Mater ; 17(1)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34785622

RESUMO

Bone regeneration and natural repair are long-standing processes that can lead to uneven new tissue growth. By introducing scaffolds that can be autografts and/or allografts, tissue engineering provides new approaches to manage the major burdens involved in this process. Polymeric scaffolds allow the incorporation of bioactive agents that improve their biological and mechanical performance, making them suitable materials for bone regeneration solutions. The present work aimed to create chitosan/beta-tricalcium phosphate-based scaffolds coated with silk fibroin and evaluate their potential for bone tissue engineering. Results showed that the obtained scaffolds have porosities up to 86%, interconnectivity up to 96%, pore sizes in the range of 60-170 µm, and a stiffness ranging from 1 to 2 MPa. Furthermore, when cultured with MC3T3 cells, the scaffolds were able to form apatite crystals after 21 d; and they were able to support cell growth and proliferation up to 14 d of culture. Besides, cellular proliferation was higher on the scaffolds coated with silk. These outcomes further demonstrate that the developed structures are suitable candidates to enhance bone tissue engineering.


Assuntos
Quitosana , Fibroínas , Fosfatos de Cálcio , Proliferação de Células , Fibroínas/química , Porosidade , Seda/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
19.
Crit Rev Biotechnol ; 30(3): 200-21, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20735324

RESUMO

Despite the many advances in tissue engineering approaches, scientists still face significant challenges in trying to repair and replace soft tissues. Nature-inspired routes involving the creation of polymer-based systems of natural origins constitute an interesting alternative route to produce novel materials. The interest in these materials comes from the possibility of constructing multi-component systems that can be manipulated by composition allowing one to mimic the tissue environment required for the cellular regeneration of soft tissues. For this purpose, factors such as the design, choice, and compatibility of the polymers are considered to be key factors for successful strategies in soft tissue regeneration. More recently, polysaccharide-protein based systems have being increasingly studied and proposed for the treatment of soft tissues. The characteristics, properties, and compatibility of the resulting materials investigated in the last 10 years, as well as commercially available matrices or those currently under investigation are the subject matter of this review.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Biopolímeros/química , Biopolímeros/metabolismo , Biotecnologia/métodos , Alginatos/química , Alginatos/metabolismo , Celulose/química , Celulose/metabolismo , Quitosana/química , Quitosana/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Proteínas/química , Proteínas/metabolismo , Alicerces Teciduais/química
20.
Carbohydr Polym ; 249: 116839, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32933683

RESUMO

The design of innovative pharmaceutical products, able to reach unexplored market niches, requires natural materials use with improved swelling and moisture properties. Herein, chitosan (CHT), a natural polymer, was combined with virgin coconut oil (VCO), a resource extracted from coconut kernels, to develop emulsion-based films for biomedical purposes. The film's properties were tuned by changing VCO concentrations, and the structural, morphological, and physical properties of the films were evaluated. The CHT/VCO-based film morphology showed the presence of VCO droplets at different sizes, both in the surface and inner part. Moreover, the capability to develop CHT/VCO-films as superabsorbent materials was shown. The film extracts cytotoxicity was assessed using human adipose stem cells, and metabolic activity was confirmed. The findings suggest that incorporating a small volume of VCO into the CHT system, superabsorbent materials with the potential to be applied in biomedical devices that require high swelling properties, can be developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA