Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; : e17536, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360493

RESUMO

Drought stress is a key limitation for plant growth and colonization of arid habitats. We study the evolution of gene expression response to drought stress in a wild tomato, Solanum chilense, naturally occurring in dry habitats in South America. We conduct a transcriptome analysis under standard and drought experimental conditions to identify drought-responsive gene networks and estimate the age of the involved genes. We identify two main regulatory networks corresponding to two typical drought-responsive strategies: cell cycle and fundamental metabolic processes. The metabolic network exhibits a more recent evolutionary origin and a more variable transcriptome response than the cell cycle network (with ancestral origin and higher conservation of the transcriptional response). We also integrate population genomics analyses to reveal positive selection signals acting at the genes of both networks, revealing that genes exhibiting selective sweeps of older age also exhibit greater connectivity in the networks. These findings suggest that adaptive changes first occur at core genes of drought response networks, driving significant network re-wiring, which likely underpins species divergence and further spread into drier habitats. Combining transcriptomics and population genomics approaches, we decipher the timing of gene network evolution for drought stress response in arid habitats.

2.
New Phytol ; 237(5): 1908-1921, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36419182

RESUMO

Positive selection is the driving force underpinning local adaptation and leaves footprints of selective sweeps on the underlying major genes. Quantifying the timing of selection and revealing the genetic bases of adaptation in plant species occurring in steep and varying environmental gradients are crucial to predict a species' ability to colonize new niches. We use whole-genome sequence data from six populations across three different habitats of the wild tomato species Solanum chilense to infer the past demographic history and search for genes under strong positive selection. We then correlate current and past climatic projections with the demographic history, allele frequencies, the age of selection events and distribution shifts. Several selective sweeps occur at regulatory networks involved in root-hair development in low altitude and response to photoperiod and vernalization in high-altitude populations. These sweeps appear to occur in a concerted fashion in a given regulatory gene network at particular periods of substantial climatic change. Using a unique combination of genome scans and modelling of past climatic data, we quantify the timing of selection at genes likely underpinning local adaptation to semiarid habitats.


Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Frequência do Gene , Solanum/genética , Ecossistema , Adaptação Fisiológica/genética , Seleção Genética , Genética Populacional
3.
Genet Mol Biol ; 43(2): e20180291, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353100

RESUMO

Phylogenetic niche conservatism can be investigated at multiple scales on an explicit geographical context. Haplotype-based comparative analyses of lineages occupying the same region, and thus subjected to similar environmental factors, allow decoupling shared evolutionary and ecological patterns, as well as multiple dimensions of adaptive diversification. Here we aimed to assess the role of environmental drivers on diversification of subtropical grassland, based on haplotypic diversity of two plant genera. We sampled two closely related and co-distributed grassland plant genera, Petunia and Calibrachoa, across their entire distribution area. Eigenvectors extracted from pairwise distances based on chloroplast DNA haplotypes were used to fit Phylogenetic Signal-Representation (PSR) curves to estimate evolutionary patterns in 19 bioclimatic variables and altitude. The PSR curves showed that altitude, precipitation, and temperature variables changed at different rates with haplotype differentiation. Altitude and temperature traits evolved under conditions closer to a neutral dynamics, whereas precipitation traits differentiated following more complex models. Our results indicated that the diversification in the two genera was more limited by precipitation conditions. Based on these novel findings, we suggest that future studies should test the possible impact of precipitation variables on the process of ecological differentiation in these genera.

4.
New Phytol ; 224(1): 367-379, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31230368

RESUMO

Nucleotide binding site, leucine-rich repeat receptors (NLRs) are canonical resistance (R) genes in plants, fungi and animals, functioning as central (helper) and peripheral (sensor) genes in a signalling network. We investigate NLR evolution during the colonization of novel habitats in a model tomato species, Solanum chilense. We used R-gene enrichment sequencing to obtain polymorphism data at NLRs of 140 plants sampled across 14 populations covering the whole species range. We inferred the past demographic history of habitat colonization by resequencing whole genomes from three S. chilense plants from three key populations and performing approximate Bayesian computation using data from the 14 populations. Using these parameters, we simulated the genetic differentiation statistics distribution expected under neutral NLR evolution and identified small subsets of outlier NLRs exhibiting signatures of selection across populations. NLRs under selection between habitats are more often helper genes, whereas those showing signatures of adaptation in single populations are more often sensor-NLRs. Thus, centrality in the NLR network does not constrain NLR evolvability, and new mutations in central genes in the network are key for R-gene adaptation during colonization of different habitats.


Assuntos
Adaptação Fisiológica/genética , Ecossistema , Genes de Plantas , Proteínas NLR/genética , Solanum/genética , Sítios de Ligação , Biodiversidade , Simulação por Computador , Loci Gênicos , Genética Populacional , Genoma de Planta , Geografia , Proteínas NLR/metabolismo , Seleção Genética , Especificidade da Espécie
5.
Genet Mol Biol ; 40(1 suppl 1): 191-199, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28199443

RESUMO

Recently, it has been suggested that internal transcribed spacer (ITS) sequences are under selective constraints to preserve their secondary structure. Here, we investigate the patterns of the ITS nucleotide and secondary structure conservation across the Passiflora L. genus to evaluate the potential use of secondary structure data as a helpful tool for the alignment in taxonomically complex genera. Considering the frequent use of ITS, this study also presents a perspective on future analyses in other plant groups. The ITS1 and ITS2 sequences presented significant differences for mean values of the lowest energy state (LES) and for number of hairpins in different Passiflora subgenera. Statistical analyses for the subgenera separately support significant differences between the LES values and the total number of secondary structures for ITS. In order to evaluate whether the LES values of ITS secondary structures were related to selective constraints, we compared these results among 120 ITS sequences from Passiflora species and 120 randomly generated sequences. These analyses indicated that Passiflora ITS sequences present characteristics of a region under selective constraint to maintain the secondary structure showing to be a promising tool to improve the alignments and identify sites with non-neutral substitutions or those correlated evolutionary steps.

6.
BMC Ecol Evol ; 21(1): 196, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702161

RESUMO

BACKGROUND: Historical and ecological processes shape patterns of genetic diversity in plant species. Colonization to new environments and geographical landscape features determine, amongst other factors, genetic diversity within- and differentiation between-populations. We analyse the genetic diversity and population structure of Calibrachoa heterophylla to infer the influence of abiotic landscape features on the level of gene flow in this coastal species of the South Atlantic Coastal Plain. RESULTS: The C. heterophylla populations located on early-deposited coastal plain regions show higher genetic diversity than those closer to the sea. The genetic differentiation follows a pattern of isolation-by-distance. Landscape features, such as water bodies and wind corridors, and geographical distances equally explain the observed genetic differentiation, whereas the precipitation seasonality exhibits a strong signal for isolation-by-environment in marginal populations. The estimated levels of gene flow suggest that marginal populations had restricted immigration rates enhancing differentiation. CONCLUSIONS: Topographical features related to coastal plain deposition history influence population differentiation in C. heterophylla. Gene flow is mainly restricted to nearby populations and facilitated by wind fields, albeit without any apparent influence of large water bodies. Furthermore, differential rainfall regimes in marginal populations seem to promote genetic differentiation.


Assuntos
Fluxo Gênico , Variação Genética , Geografia , América do Sul
7.
Genet. mol. biol ; 40(1,supl.1): 191-199, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892388

RESUMO

Abstract Recently, it has been suggested that internal transcribed spacer (ITS) sequences are under selective constraints to preserve their secondary structure. Here, we investigate the patterns of the ITS nucleotide and secondary structure conservation across the Passiflora L. genus to evaluate the potential use of secondary structure data as a helpful tool for the alignment in taxonomically complex genera. Considering the frequent use of ITS, this study also presents a perspective on future analyses in other plant groups. The ITS1 and ITS2 sequences presented significant differences for mean values of the lowest energy state (LES) and for number of hairpins in different Passiflora subgenera. Statistical analyses for the subgenera separately support significant differences between the LES values and the total number of secondary structures for ITS. In order to evaluate whether the LES values of ITS secondary structures were related to selective constraints, we compared these results among 120 ITS sequences from Passiflora species and 120 randomly generated sequences. These analyses indicated that Passiflora ITS sequences present characteristics of a region under selective constraint to maintain the secondary structure showing to be a promising tool to improve the alignments and identify sites with non-neutral substitutions or those correlated evolutionary steps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA