Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 588(7838): 424-428, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328663

RESUMO

Exotic states such as topological insulators, superconductors and quantum spin liquids are often challenging or impossible to create in a single material1-3. For example, it is unclear whether topological superconductivity, which has been suggested to be a key ingredient for topological quantum computing, exists in any naturally occurring material4-9. The problem can be circumvented by deliberately selecting the combination of materials in heterostructures so that the desired physics emerges from interactions between the different components1,10-15. Here we use this designer approach to fabricate van der Waals heterostructures that combine a two-dimensional (2D) ferromagnet with a superconductor, and we observe 2D topological superconductivity in the system. We use molecular-beam epitaxy to grow 2D islands of ferromagnetic chromium tribromide16 on superconducting niobium diselenide. We then use low-temperature scanning tunnelling microscopy and spectroscopy to reveal the signatures of one-dimensional Majorana edge modes. The fabricated 2D van der Waals heterostructure provides a high-quality, tunable system that can be readily integrated into device structures that use topological superconductivity. The layered heterostructures can be readily accessed by various external stimuli, potentially allowing external control of 2D topological superconductivity through electrical17, mechanical18, chemical19 or optical means20.

2.
Angew Chem Int Ed Engl ; : e202411893, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039830

RESUMO

Triangulenes as neutral radicals are becoming promising candidates for future applications such as spintronics and quantum technologies. To extend the potential of the advanced materials, it is of importance to control their electronic and magnetic properties by multiple graphitic nitrogen doping. Here, we synthesize triaza[5]triangulene on Au(111) by cyclodehydrogenation, and its derivatives by cleaving C-N bonds. Bond-resolved scanning tunneling microscopy and scanning tunneling spectroscopy provided detailed structural information and evidence for open-shell singlet ground state. The antiferromagnetic arrangement of the spins in positively doped triaza[5]triangulene was further confirmed by density function theory calculations. The key aspect of triangulenes with multiple graphitic nitrogen is the extra pz electrons composing the π orbitals, favoring charge transfer to the substrate and changing their low-energy excitations. Our findings pave the way for the exploration of exotic low-dimensional quantum phases of matter in heteroatom doped organic systems.

3.
Angew Chem Int Ed Engl ; 63(18): e202401027, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38415373

RESUMO

The incorporation of Si atoms into organic compounds significantly increases a variety of functionality, facilitating further applications. Recently, on-surface synthesis was introduced into organosilicon chemistry as 1,4-disilabenzene bridged nanostructures were obtained via coupling between silicon atoms and brominated phenyl groups at the ortho position on Au(111). Here, we demonstrate a high generality of this strategy via syntheses of silole derivatives and nanoribbon structures with eight-membered sila-cyclic rings from dibrominated molecules at the bay and peri positions on Au(111), respectively. Their structures and electronic properties were investigated by a combination of scanning tunneling microscopy/spectroscopy and density functional theory calculations. This work demonstrates a great potential to deal with heavy group 14 elements in on-surface silicon chemistry.

4.
Phys Chem Chem Phys ; 21(7): 3814-3821, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30698176

RESUMO

Phenazine derivative molecules were studied using steady state and time resolved fluorescence techniques and demonstrated to lead to strong formation of aggregated species, identified as dimers by time dependent density functional theory calculations. Blended films in a matrix of Zeonex®, produced at different concentrations, showed different contributions of dimer and monomer emissions in a prompt time frame, e.g. less than 50 ns. In contrast, the phosphorescence (e.g. emission from the triplet state) shows no significant effect on dimer formation, although strong dependence of the phosphorescence intensity on concentration is observed, leading to phosphorescence being quenched at higher concentration.

5.
Nat Chem ; 15(1): 136-142, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36344816

RESUMO

Substituting carbon with silicon in organic molecules and materials has long been an attractive way to modify their electronic structure and properties. Silicon-doped graphene-based materials are known to exhibit exotic properties, yet conjugated organic materials with atomically precise Si substitution have remained difficult to prepare. Here we present the on-surface synthesis of one- and two-dimensional covalent organic frameworks whose backbones contain 1,4-disilabenzene (C4Si2) linkers. Silicon atoms were first deposited on a Au(111) surface, forming a AuSix film on annealing. The subsequent deposition and annealing of a bromo-substituted polyaromatic hydrocarbon precursor (triphenylene or pyrene) on this surface led to the formation of the C4Si2-bridged networks, which were characterized by a combination of high-resolution scanning tunnelling microscopy and photoelectron spectroscopy supported by density functional theory calculations. Each Si in a hexagonal C4Si2 ring was found to be covalently linked to one terminal Br atom. For the linear structure obtained with the pyrene-based precursor, the C4Si2 rings were converted into C4Si pentagonal siloles by further annealing.

6.
Adv Mater ; 35(9): e2206456, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36526444

RESUMO

2D ferroelectric materials provide a promising platform for the electrical control of quantum states. In particular, due to their 2D nature, they are suitable for influencing the quantum states of deposited molecules via the proximity effect. Here, electrically controllable molecular states in phthalocyanine molecules adsorbed on monolayer ferroelectric material SnTe are reported. The strain and ferroelectric order in SnTe are found to create a transition between two distinct orbital orders in the adsorbed phthalocyanine molecules. By controlling the polarization of the ferroelectric domain using scanning tunneling microscopy (STM), it is successfully demonstrated that orbital order can be manipulated electrically. The results show how ferroelastic coupling in 2D systems allows for control of molecular states, providing a starting point for ferroelectrically switchable molecular orbital ordering and ultimately, electrical control of molecular magnetism.

7.
Nat Commun ; 14(1): 7741, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007486

RESUMO

Synthesis of one-dimensional molecular arrays with tailored stereoisomers is challenging yet has great potential for application in molecular opto-, electronic- and magnetic-devices, where the local array structure plays a decisive role in the functional properties. Here, we demonstrate the construction and characterization of dehydroazulene isomer and diradical units in three-dimensional organometallic compounds on Ag(111) with a combination of low-temperature scanning tunneling microscopy and density functional theory calculations. Tip-induced voltage pulses firstly result in the formation of a diradical species via successive homolytic fission of two C-Br bonds in the naphthyl groups, which are subsequently transformed into chiral dehydroazulene moieties. The delicate balance of the reaction rates among the diradical and two stereoisomers, arising from an in-line configuration of tip and molecular unit, allows directional azulene-to-azulene and azulene-to-diradical local probe structural isomerization in a controlled manner. Furthermore, our theoretical calculations suggest that the diradical moiety hosts an open-shell singlet with antiferromagnetic coupling between the unpaired electrons, which can undergo an inelastic spin transition of 91 meV to the ferromagnetically coupled triplet state.

8.
ACS Nano ; 16(7): 11244-11250, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35730993

RESUMO

The design of magnetic topological states due to spin polarization in an extended π carbon system has great potential in spintronics application. Although magnetic zigzag edges in graphene nanoribbons (GNRs) have been investigated earlier, real-space observation and manipulation of spin polarization in a heteroatom substituted system remains challenging. Here, we investigate a zero-bias peak at a boron site embedded at the center of an armchair-type GNR on a AuSiX/Au(111) surface with a combination of low-temperature scanning tunneling microscopy/spectroscopy and density functional theory calculations. After the tip-induced removal of a Si atom connected to two adjacent boron atoms, a clear Kondo resonance peak appeared and was further split by an applied magnetic field of 12 T. This magnetic state can be relayed along the longitudinal axis of the GNR by sequential removal of Si atoms.

9.
ACS Nano ; 15(11): 17813-17819, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34730941

RESUMO

The combination of two-dimensional (2D) materials into vertical heterostructures has emerged as a promising path to designer quantum materials with exotic properties. Here, we extend this concept from inorganic 2D materials to 2D metal-organic frameworks (MOFs) that offer additional flexibility in realizing designer heterostructures. We successfully fabricate a monolayer 2D Cu-dicyanoanthracene MOF on a 2D van der Waals NbSe2 superconducting substrate. The structural and electronic properties of two different phases of the 2D MOF are characterized by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS), complemented by density-functional theory (DFT) calculations. These experiments allow us to follow the formation of the kagome band structure from Star of David-shaped building blocks. This work extends the synthesis and electronic tunability of 2D MOFs beyond the electronically less relevant metal and semiconducting surfaces to superconducting substrates, which are needed for the development of emerging quantum materials such as topological superconductors.

10.
Adv Mater ; 33(23): e2006850, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938604

RESUMO

The ability to imprint a given material property to another through a proximity effect in layered 2D materials has opened the way to the creation of designer materials. Here, molecular-beam epitaxy is used for direct synthesis of a superconductor-ferromagnet heterostructure by combining superconducting niobium diselenide (NbSe2 ) with the monolayer ferromagnetic chromium tribromide (CrBr3 ). Using different characterization techniques and density-functional theory calculations, it is confirmed that the CrBr3 monolayer retains its ferromagnetic ordering with a magnetocrystalline anisotropy favoring an out-of-plane spin orientation. Low-temperature scanning tunneling microscopy measurements show a slight reduction of the superconducting gap of NbSe2 and the formation of a vortex lattice on the CrBr3 layer in experiments under an external magnetic field. The results contribute to the broader framework of exploiting proximity effects to realize novel phenomena in 2D heterostructures.

11.
J Phys Condens Matter ; 31(43): 435502, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31307028

RESUMO

We report a theoretical investigation of magnetic, electronic, and topological properties of Hg1-x Mn x Te alloys. We consider periodic structures with Mn concentrations as x = 0, 0.25, 0.5, 0.75, and 1. Our hybrid DFT/Hartree-Fock calculations for the bandgaps of antiferromagnetic (ground-state) phases are in good agreement with experiments. The calculations also show that the modification of the magnetic ordering from anti- to ferromagnetic leads to a significant bandgap reduction, resulting in a metal/insulator transition at higher Mn concentrations. We show that a ferromagnetic Weyl semimetal phase is achieved for x = 0.25, where a single pair of Weyl nodes mirrored by the [Formula: see text] point in the momentum space is observed. The non-trivial topological property of the ferromagnetic Hg0.75Mn0.25Te is confirmed by the calculation of the chirality of each Weyl node, which are connected by a surface Fermi arc of a semi infinite Hg0.75Mn0.25Te.

12.
J Phys Condens Matter ; 29(9): 09LT01, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28114122

RESUMO

We investigate, through first-principles calculations, the electronic band structure-including the spin-orbit coupling-of single-layer M3(THT)2 metal-organic frameworks, where M = Ni, Pt, Cu and Au, and THT is the 1,2,5,6,9,10-triphenylenehexathiol molecule. This MOF family contains, in its electronic structure, spin-orbit gaps that could allow their use in quantum spin Hall effect devices. We find that the partial inclusion of exact exchange in the calculations (beyond a semi-local exchange-correlation level) leads to quantitative, and even qualitative, modifications of the electronic structure of Ni3(THT)2 and Pt3(THT)2 relative to calculations at semi-local exchange-correlation level: upon inclusion of exact exchange, the predicted fundamental band gap of these semiconductor materials increases to more than twice, and the predicted spin-orbit gaps change by as much as 44%. Even the qualitative description of the valence bands of these materials changes upon inclusion of exact exchange. We also find that the magnitudes of the spin-orbit gaps are not monotonic with the atomic number of the metal atom.

13.
J Phys Condens Matter ; 29(46): 465502, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29053472

RESUMO

In the present work we predict, through first-principles calculations, that bilayers of the recently synthesized Ni3 [Formula: see text] [Formula: see text] and Pt3 [Formula: see text] [Formula: see text] layered materials are topological insulators upon electron doping, and that their topological insulator properties can be modulated by the application of electric fields with magnitudes achievable in devices. The electronic structures of both bilayers are characterized by spin-orbit split graphene-like bands, with gap magnitudes that are three orders of magnitude larger than graphene's. In ribbon geometries, chiral edge modes develop at each side with band dispersions similar to that of Kane-Mele graphene model. Surprisingly, the edge states' spin-propagation locking occurs even for very thin ribbons. We also find that the response of the electronic structure of both materials to applied electric fields are similar to both graphene and the Kane-Mele model with a Rashba term. All these findings indicate that these bilayer systems can be considered as large-spin-orbit graphene analogues with a strong sensitivity to applied electric fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA