Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 98: 117553, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128297

RESUMO

Neutrophil binding to vascular P- and E-selectin is the rate-limiting step in the recruitment of immune cells to sites of inflammation. Many diseases, including sickle cell anemia, post-myocardial infarction reperfusion injury, and acute respiratory distress syndrome are characterized by dysregulated inflammation. We have recently reported sialyl Lewisx analogues as potent antagonists of P- and E-selectin and demonstrated their in vivo immunosuppressive activity. A key component of these molecules is a tartrate diester that serves as an acyclic tether to orient the fucoside and the galactoside moiety in the required gauche conformation for optimal binding. The next stage of our study involved attaching an extended carbon chain onto one of the esters. This chain could be utilized to tether other pharmacophores, lipids, and contrast agents in the context of enhancing pharmacological applications through the sialyl Lewisx / receptor-mediated mechanism. Herein, we report our preliminary studies to generate a small library of tartrate based sialyl Lewisx analogues bearing extended carbon chains. Anionic charged chemical entities are attached to take advantage of proximal charged amino acids in the carbohydrate recognition domain of the selectin receptors. Starting with a common azido intermediate, synthesized using copper-catalyzed Huisgen 1,3-dipolar cycloadditions, these molecules demonstrate E- and P-selectin binding properties.


Assuntos
Selectina E , Selectina-P , Humanos , Selectina-P/metabolismo , Selectina E/metabolismo , Tartaratos , Antígeno Sialil Lewis X , Oligossacarídeos/química , Sítios de Ligação , Carbono , Inflamação , Adesão Celular
2.
J Org Chem ; 88(15): 10974-10985, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37449872

RESUMO

E- and P-selectins are adhesion proteins implicated in immune cell recruitment at sites of infection, making them important drug targets for diseases involving excessive and uncontrolled inflammation. In this study, we developed an efficient strategy to synthesize bicyclic galactopyranosides through a key stereoselective equatorial C4-propiolate addition and TMSCN axial C-glycosidation. The nitrile group can then be converted to the carboxyl and different bioisosteres at a late stage in the synthesis, allowing for various derivatizations to potentially enhance biological activity. The sialyl LewisX glycomimetic featuring this rigidified bicyclic galactopyranoside moiety prevents neutrophil adhesion to endothelial cells in vitro by binding to both E- and P-selectins. We show here that the axial carboxyl analogue blocks immune cell recruitment in vivo, demonstrating its potential as an immunomodulator.


Assuntos
Células Endoteliais , Selectina-P , Selectina-P/química , Selectina-P/metabolismo , Antígeno Sialil Lewis X , Células Endoteliais/metabolismo , Oligossacarídeos/química
3.
J Org Chem ; 84(11): 7372-7387, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31088084

RESUMO

Reported herein is the synthesis of sialyl LewisX analogues bearing a trans-bicyclo[4.4.0] dioxadecane-modified 3- O,4- C-fused galactopyranoside scaffold that locks the carboxylate pharmacophore in either the axial or equatorial position. This novel series of bicyclic galactopyranosides are prepared through a stereocontrolled intramolecular cyclization reaction that has been evaluated both experimentally and by density functional theory calculations. The cyclization precursors are obtained from ß-d-galactose pentaacetate in a nine-step sequence featuring a highly diastereoselective equatorial alkynylation and Cu(I) catalyzed formation of the acetylenic α-ketoester moiety. Preliminary biological evaluations indicate improved activity as P-selectin antagonists for the axially configured analogues as compared to their equatorial counterparts.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Galactose/química , Antígeno Sialil Lewis X/química , Estrutura Molecular
4.
Org Biomol Chem ; 16(32): 5771-5779, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30052255

RESUMO

A key missing tool in the chemist's toolbox is an effective biocatalyst for macrocyclization. Macrocycles limit the conformational flexibility of small molecules, often improving their ability to bind selectively and with high affinity to a target, making them a privileged structure in drug discovery. Macrocyclic natural product biosynthesis offers an obvious starting point for biocatalyst discovery via the native macrocycle forming biosynthetic mechanism. Herein we demonstrate that the thioesterase domains (TEs) responsible for macrocyclization of resorcylic acid lactones are promising catalysts for the chemoenzymatic synthesis of 12- to 18-member ring macrolactones and macrolactams. The TE domains responsible for zearalenone and radicicol biosynthesis successfully generate resorcylate-like 12- to 18-member macrolactones and a 14-member macrolactam. In addition these enzymes can also macrolactonize a non-resorcylate containing depsipeptide, suggesting they are versatile biocatalysts. Simple saturated omega-hydroxy acyl chains are not macrocyclized, nor are the alpha-beta unsaturated derivatives, clearly outlining the scope of the substrate tolerance. These data dramatically expand our understanding of substrate tolerance of these enzymes and are consistent with our understanding of the role of TEs in iterative polyketide biosynthesis. In addition this work shows these TEs to be the most substrate tolerant polyketide macrocyclizing enzymes known, accessing resorcylate lactone and lactams as well as cyclicdepsipeptides, which are highly biologically relevant frameworks.

5.
Chem Commun (Camb) ; 53(62): 8667-8670, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28726879

RESUMO

Over 50 years ago, Jencks and Gilchrist showed that formaldehyde catalyses the hydrolysis of phosphoramidate through electrophilic activation, induced by covalent attachment to its nitrogen atom. Given our interest in the use of aldehydes as catalysts, this work was revisited to identify a superior catalyst, o-phthalaldehyde, which facilitates hydrolyses of various organophosphorus compounds bearing P([double bond, length as m-dash]O)-NH subunits under mild conditions. Interestingly, chemoselective hydrolysis of the P([double bond, length as m-dash]O)-N bonds could be accomplished in the presence of P([double bond, length as m-dash]O)-OR bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA