Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioinformatics ; 40(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38407280

RESUMO

SUMMARY: Nanometa Live presents a user-friendly interface designed for real-time metagenomic data analysis and pathogen identification utilizing Oxford Nanopore Technologies' MinION and Flongle flow cells. It offers an efficient workflow and graphical interface for the visualization and interpretation of metagenomic data as it is being generated. Key features include automated BLAST validation, streamlined handling of custom Kraken2 databases, and a simplified graphical user interface for enhanced user experience. Nanometa Live is particularly notable for its capability to run without constant internet or server access once installed, setting it apart from similar tools. It provides a comprehensive view of taxonomic composition and facilitates the detection of user-defined pathogens or other species of interest, catering to both researchers and clinicians. AVAILABILITY AND IMPLEMENTATION: Nanometa Live has been implemented as a local web application using the Dash framework with Snakemake handling the data processing. The source code is freely accessible on the GitHub repository at https://github.com/FOI-Bioinformatics/nanometa_live and it is easily installable using Bioconda. It includes containerization support via Docker and Singularity, ensuring ease of use, reproducibility, and portability.


Assuntos
Metagenoma , Software , Reprodutibilidade dos Testes , Metagenômica , Análise de Dados
2.
Proc Natl Acad Sci U S A ; 117(49): 31309-31318, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33214151

RESUMO

Adipose tissue (AT) inflammation contributes to systemic insulin resistance. In obesity and type 2 diabetes (T2D), retinol binding protein 4 (RBP4), the major retinol carrier in serum, is elevated in AT and has proinflammatory effects which are mediated partially through Toll-like receptor 4 (TLR4). We now show that RBP4 primes the NLRP3 inflammasome for interleukin-1ß (IL1ß) release, in a glucose-dependent manner, through the TLR4/MD2 receptor complex and TLR2. This impairs insulin signaling in adipocytes. IL1ß is elevated in perigonadal white AT (PGWAT) of chow-fed RBP4-overexpressing mice and in serum and PGWAT of high-fat diet-fed RBP4-overexpressing mice vs. wild-type mice. Holo- or apo-RBP4 injection in wild-type mice causes insulin resistance and elevates PGWAT inflammatory markers, including IL1ß. TLR4 inhibition in RBP4-overexpressing mice reduces PGWAT inflammation, including IL1ß levels and improves insulin sensitivity. Thus, the proinflammatory effects of RBP4 require NLRP3-inflammasome priming. These studies may provide approaches to reduce AT inflammation and insulin resistance in obesity and diabetes.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo Branco/patologia , Animais , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Inflamação/patologia , Resistência à Insulina , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Fator de Necrose Tumoral alfa/metabolismo
3.
FASEB J ; 34(5): 6099-6110, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32167208

RESUMO

Retinol-binding protein-4 (RBP4) is elevated in serum and adipose tissue (AT) in obesity-induced insulin resistance and correlates inversely with insulin-stimulated glucose disposal. But its role in insulin-mediated suppression of lipolysis, free fatty acids (FFA), and endogenous glucose production (EGP) in humans is unknown. RBP4 mRNA or protein levels were higher in liver, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) in morbidly obese subjects undergoing Roux-en-Y gastric bypass surgery compared to lean controls undergoing elective laparoscopic cholecystectomy. RBP4 mRNA expression in SAT correlated with the expression of several macrophage and other inflammation markers. Serum RBP4 levels correlated inversely with glucose disposal and insulin-mediated suppression of lipolysis, FFA, and EGP. Mechanistically, RBP4 treatment of human adipocytes in vitro directly stimulated basal lipolysis. Treatment of adipocytes with conditioned media from RBP4-activated macrophages markedly increased basal lipolysis and impaired insulin-mediated lipolysis suppression. RBP4 treatment of macrophages increased TNFα production. These data suggest that elevated serum or adipose tissue RBP4 levels in morbidly obese subjects may cause hepatic and systemic insulin resistance by stimulating basal lipolysis and by activating macrophages in adipose tissue, resulting in release of pro-inflammatory cytokines that impair lipolysis suppression. While we have demonstrated this mechanism in human adipocytes in vitro, and correlations from our flux studies in humans strongly support this, further studies are needed to determine whether this mechanism explains RBP4-induced insulin resistance in humans.


Assuntos
Tecido Adiposo/patologia , Intolerância à Glucose/patologia , Resistência à Insulina , Lipólise , Fígado/patologia , Obesidade Mórbida/complicações , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Tecido Adiposo/metabolismo , Adulto , Glicemia/análise , Feminino , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Humanos , Fígado/metabolismo , Pessoa de Meia-Idade , Proteínas Plasmáticas de Ligação ao Retinol/genética
5.
J Invest Dermatol ; 141(9): 2280-2290, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33771527

RESUMO

Vitiligo is an autoimmune disease characterized by patchy, white skin owing to melanocyte loss. Commensal cutaneous or gut dysbiosis has been linked to various dermatological disorders. In this study, we studied the skin and gut microbiota of patients with vitiligo compared with those of healthy controls. We obtained swabs and biopsies from both lesional and nonlesional skin as well as stool and blood samples from each individual. We detected reduced richness and diversity of microbiota in the stools of subjects with vitiligo compared with the stools of the controls (P < 0.01). Skin swabs had greater α-diversity than biopsies (P < 0.001); swabs from lesional sites were primarily depleted of Staphylococcus compared with those from nonlesional sites (P < 0.02). Sampling deeper layers from the same patients showed differences in both α- and ß-diversity between samples with decreased richness and distribution of species (P < 0.01) in the lesional site. Biopsy microbiota from the lesional skin had distinct microbiota composition, which was depleted of protective Bifidobacterium and Bacteroides but was enriched in Proteobacteria, Streptococcus, Mycoplasma, and mtDNA (P < 0.001); the latter increased in the same patients with heightened innate immunity and stress markers in their blood (P < 0.05). These data describe vitiligo-specific cutaneous and gut microbiota and a link between skin dysbiosis, mitochondrial damage, and immunity in patients with vitiligo.


Assuntos
DNA Mitocondrial/genética , Disbiose/microbiologia , Microbioma Gastrointestinal/imunologia , Mitocôndrias/metabolismo , RNA Ribossômico 16S/genética , Pele/imunologia , Vitiligo/microbiologia , Idoso , Biodiversidade , Disbiose/imunologia , Feminino , Microbioma Gastrointestinal/genética , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Pele/microbiologia , Vitiligo/imunologia
6.
Curr Opin Allergy Clin Immunol ; 16(4): 390-5, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27253486

RESUMO

PURPOSE OF REVIEW: The purpose is to review recent studies examining the role of gut microbiota in allergic diseases and asthma. RECENT FINDINGS: Work in experimental models gives further evidence that a disturbed gut microbiota influences the propensity to develop allergic manifestations, and that changing the gut microbiota by dietary means (high fiber/acetate or prebiotics) in pregnancy may reduce the risk of allergic airways disease and food allergy in the offspring, respectively. The gut microbiome in established allergic disease and prior to disease onset has also been assessed in clinical trials. One study demonstrated a strong association between high abundance of Faecalibacterium prausnitzii and decreased levels of butyrate and propionate, and established eczema. Lower relative abundance of Ruminococcaceae appears to be implicated in food sensitization and to precede the development of atopic eczema. Decreased relative abundance of Lachnospira, Veillonella, Faecalibacterium, and Rothia in early infancy was reported to be associated with increased asthma risk. Inoculation of germ-free mice with these genera decreased airway inflammation in their offspring thereby proposing a causal role of bacteria in preventing allergic airways disease. SUMMARY: Gut microbiome research is an actively developing field. Although candidate bacterial taxa have been reported it still remains unclear which bacteria (or other microbes), in which numbers and combinations, and when during the gut colonization process may prevent allergic diseases and asthma. There is still a call for standardized approaches that will enable direct comparison of different studies.


Assuntos
Asma/microbiologia , Hipersensibilidade Alimentar/microbiologia , Microbioma Gastrointestinal/imunologia , Animais , Asma/imunologia , Asma/terapia , Feminino , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/terapia , Humanos , Exposição Materna/efeitos adversos , Prebióticos , Gravidez , Probióticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA