RESUMO
Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.
Assuntos
Genômica , Política de Saúde , Humanos , Austrália , Doenças Raras , Atenção à SaúdeRESUMO
BACKGROUND: Lung cancer is a heterogeneous disease and the primary cause of cancer-related mortality worldwide. Somatic mutations, including large structural variants, are important biomarkers in lung cancer for selecting targeted therapy. Genomic studies in lung cancer have been conducted using short-read sequencing. Emerging long-read sequencing technologies are a promising alternative to study somatic structural variants, however there is no current consensus on how to process data and call somatic events. In this study, we preformed whole genome sequencing of lung cancer and matched non-tumour samples using long and short read sequencing to comprehensively benchmark three sequence aligners and seven structural variant callers comprised of generic callers (SVIM, Sniffles2, DELLY in generic mode and cuteSV) and somatic callers (Severus, SAVANA, nanomonsv and DELLY in somatic modes). RESULTS: Different combinations of aligners and variant callers influenced somatic structural variant detection. The choice of caller had a significant influence on somatic structural variant detection in terms of variant type, size, sensitivity, and accuracy. The performance of each variant caller was assessed by comparing to somatic structural variants identified by short-read sequencing. When compared to somatic structural variants detected with short-read sequencing, more events were detected with long-read sequencing. The mean recall of somatic variant events identified by long-read sequencing was higher for the somatic callers (72%) than generic callers (53%). Among the somatic callers when using the minimap2 aligner, SAVANA and Severus achieved the highest recall at 79.5% and 79.25% respectively, followed by nanomonsv with a recall of 72.5%. CONCLUSION: Long-read sequencing can identify somatic structural variants in clincal samples. The longer reads have the potential to improve our understanding of cancer development and inform personalized cancer treatment.
Assuntos
Neoplasias Pulmonares , Sequenciamento por Nanoporos , Neoplasias Pulmonares/genética , Humanos , Sequenciamento por Nanoporos/métodos , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento Completo do Genoma/métodosRESUMO
Brain metastasis is a significant challenge for some breast cancer patients, marked by its aggressive nature, limited treatment options, and poor clinical outcomes. Immunotherapies have emerged as a promising avenue for brain metastasis treatment. B7-H3 (CD276) is an immune checkpoint molecule involved in T cell suppression, which is associated with poor survival in cancer patients. Given the increasing number of clinical trials using B7-H3 targeting CAR T cell therapies, we examined B7-H3 expression across breast cancer subtypes and in breast cancer brain metastases to assess its potential as an interventional target. B7-H3 expression was investigated using immunohistochemistry on tissue microarrays of three clinical cohorts: (i) unselected primary breast cancers (n = 347); (ii) brain metastatic breast cancers (n = 61) and breast cancer brain metastases (n = 80, including a subset of 53 patient-matched breast and brain metastasis cases); and (iii) mixed brain metastases from a range of primary tumours (n = 137). In primary breast cancers, B7-H3 expression significantly correlated with higher tumour grades and aggressive breast cancer subtypes, as well as poorer 5-year survival outcomes. Subcellular localisation of B7-H3 impacted breast cancer-specific survival, with cytoplasmic staining also correlating with a poorer outcome. Its expression was frequently detected in brain metastases from breast cancers, with up to 90% expressing B7-H3. However, not all brain metastases showed high levels of expression, with those from colorectal and renal tumours showing a low frequency of B7-H3 expression (0/14 and 2/16, respectively). The prevalence of B7-H3 expression in breast cancers and breast cancer brain metastases indicates potential opportunities for B7-H3 targeted therapies in breast cancer management.
Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Mama , Encéfalo , Fatores de Transcrição , Antígenos B7/genéticaRESUMO
Breast cancer brain metastases (BM) are associated with a dismal prognosis and very limited treatment options. Standard chemotherapy is challenging in BM patients because the high dosage required for an effective outcome causes unacceptable systemic toxicities, a consequence of poor brain penetration, and a short physiological half-life. Nanomedicines have the potential to circumvent off-target toxicities and factors limiting the efficacy of conventional chemotherapy. The HER3 receptor is commonly expressed in breast cancer BM. Here, we investigate the use of hyperbranched polymers (HBP) functionalized with a HER3 bispecific-antibody fragment for cancer cell-specific targeting and pH-responsive release of doxorubicin (DOX) to selectively deliver and treat BM. We demonstrated that DOX-release from the HBP carrier was controlled, gradual, and greater in endosomal acidic conditions (pH 5.5) relative to physiologic pH (pH 7.4). We showed that the HER3-targeted HBP with DOX payload was HER3-specific and induced cytotoxicity in BT474 breast cancer cells (IC50: 17.6 µg/mL). Therapeutic testing in a BM mouse model showed that HER3-targeted HBP with DOX payload impacted tumor proliferation, reduced tumor size, and prolonged overall survival. HER3-targeted HBP level detected in ex vivo brain samples was 14-fold more than untargeted-HBP. The HBP treatments were well tolerated, with less cardiac and oocyte toxicity compared to free DOX. Taken together, our HER3-targeted HBP nanomedicine has the potential to deliver chemotherapy to BM while reducing chemotherapy-associated toxicities.
Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Nanopartículas , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Polímeros/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Sistemas de Liberação de Medicamentos , Liberação Controlada de FármacosRESUMO
INTRODUCTION: Maximising alternative sample types for genomics in advanced lung cancer is important because bronchoscopic samples may sometimes be insufficient for this purpose. Further, the clinical applications of comprehensive molecular analysis such as whole genome sequencing (WGS) are rapidly developing. Diff-Quik cytology smears from EBUS TBNA is an alternative source of DNA, but its feasibility for WGS has not been previously demonstrated. METHODS: Diff-Quik smears were collected along with research cell pellets. RESULTS: Tumour content of smears were compared to research cell pellets from 42 patients, which showed good correlation (Spearman correlation 0.85, P < 0.0001). A subset of eight smears underwent WGS, which presented similar mutation profiles to WGS of the matched cell pellet. DNA yield was predicted using a regression equation of the smears cytology features, which correctly predicted DNA yield > 1500 ng in 7 out of 8 smears. CONCLUSIONS: WGS of commonly collected Diff-Quik slides is feasible and their DNA yield can be predicted.
Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biópsia por Agulha Fina , Endossonografia , Sequenciamento Completo do Genoma , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Broncoscopia , Linfonodos/patologiaRESUMO
Circular RNAs (circRNAs) are a class of RNAs that is under increasing scrutiny, although their functional roles are debated. We analyzed RNA-seq data of 348 primary breast cancers and developed a method to identify circRNAs that does not rely on unmapped reads or known splice junctions. We identified 95,843 circRNAs, of which 20,441 were found recurrently. Of the circRNAs that match exon boundaries of the same gene, 668 showed a poor or even negative (R < 0.2) correlation with the expression level of the linear gene. In silico analysis showed only a minority (8.5%) of circRNAs could be explained by known splicing events. Both these observations suggest that specific regulatory processes for circRNAs exist. We confirmed the presence of circRNAs of CNOT2, CREBBP, and RERE in an independent pool of primary breast cancers. We identified circRNA profiles associated with subgroups of breast cancers and with biological and clinical features, such as amount of tumor lymphocytic infiltrate and proliferation index. siRNA-mediated knockdown of circCNOT2 was shown to significantly reduce viability of the breast cancer cell lines MCF-7 and BT-474, further underlining the biological relevance of circRNAs. Furthermore, we found that circular, and not linear, CNOT2 levels are predictive for progression-free survival time to aromatase inhibitor (AI) therapy in advanced breast cancer patients, and found that circCNOT2 is detectable in cell-free RNA from plasma. We showed that circRNAs are abundantly present, show characteristics of being specifically regulated, are associated with clinical and biological properties, and thus are relevant in breast cancer.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , RNA/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Feminino , Humanos , Metástase Linfática , Células MCF-7 , RNA/metabolismo , RNA Circular , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , TranscriptomaRESUMO
BACKGROUND: Circulating cell-free DNA (cfDNA) in the plasma of cancer patients contains cell-free tumour DNA (ctDNA) derived from tumour cells and it has been widely recognized as a non-invasive source of tumour DNA for diagnosis and prognosis of cancer. Molecular profiling of ctDNA is often performed using targeted sequencing or low-coverage whole genome sequencing (WGS) to identify tumour specific somatic mutations or somatic copy number aberrations (sCNAs). However, these approaches cannot efficiently detect all tumour-derived genomic changes in ctDNA. METHODS: We performed WGS analysis of cfDNA from 4 breast cancer patients and 2 patients with benign tumours. We sequenced matched germline DNA for all 6 patients and tumour samples from the breast cancer patients. All samples were sequenced on Illumina HiSeqXTen sequencing platform and achieved approximately 30x, 60x and 100x coverage on germline, tumour and plasma DNA samples, respectively. RESULTS: The mutational burden of the plasma samples (1.44 somatic mutations/Mb of genome) was higher than the matched tumour samples. However, 90% of high confidence somatic cfDNA variants were not detected in matched tumour samples and were found to comprise two background plasma mutational signatures. In contrast, cfDNA from the di-nucleosome fraction (300 bp-350 bp) had much higher proportion (30%) of variants shared with tumour. Despite high coverage sequencing we were unable to detect sCNAs in plasma samples. CONCLUSIONS: Deep sequencing analysis of plasma samples revealed higher fraction of unique somatic mutations in plasma samples, which were not detected in matched tumour samples. Sequencing of di-nucleosome bound cfDNA fragments may increase recovery of tumour mutations from plasma.
Assuntos
Neoplasias da Mama/genética , DNA Tumoral Circulante/sangue , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento Completo do Genoma/métodos , Adulto , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Feminino , Humanos , Mutação , PrognósticoRESUMO
Invasive lobular carcinoma (ILC) is the most common of the breast cancer special types, accounting for up to 15% of all breast cancer cases. ILCs are noted for their lack of E-cadherin function, which underpins their characteristic discohesive growth pattern, with cells arranged in single file and dispersed throughout the stroma. Typically, tumours are luminal in molecular subtype, being oestrogen and progesterone receptor positive, and HER2 negative. Since last reviewing the lobular literature (McCart Reed et al., Breast Cancer Res 17:12, 2015), there has been a considerable increase in research output focused on this tumour type, including studies into the pathology and management of disease, a high-resolution definition of the genomic landscape of tumours as well as the evolution of several potential therapeutic avenues. There abounds a huge amount of new data, which we will review herein.
Assuntos
Neoplasias da Mama/diagnóstico , Carcinoma Lobular/diagnóstico , Biomarcadores Tumorais , Neoplasias da Mama/etiologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Carcinoma Lobular/etiologia , Carcinoma Lobular/mortalidade , Carcinoma Lobular/terapia , Diagnóstico Diferencial , Progressão da Doença , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Expressão Gênica , Genômica/métodos , Humanos , Mutação , Gradação de Tumores , Estadiamento de Neoplasias , Fenótipo , Prognóstico , Microambiente TumoralRESUMO
BACKGROUND: Breast cancers acquire aggressive capabilities via epithelial to mesenchymal transition (EMT), in which various integrins/integrin-linked kinase signalling are upregulated. METHODS: We investigated this in two patient-derived xenografts (PDXs) developed from breast-to-bone metastases, and its functional significance in a breast cancer cell line system. ED03 and EDW01 PDXs were grown subcutaneously in immunocompromised SCID mice through 11 passages and 7 passages, respectively. Tumour tissue was assessed using immunohistochemistry (IHC) for oestrogen receptor (ER)-alpha, E-cadherin, vimentin, Twist1, beta-catenin, P120-RasGAP, CD44, CD24 and Ki67, and RT-qPCR of EMT-related factors (CDH1, VIM, CD44, CD24), integrins beta 1 (ITGB1), alpha 2 (ITGA2) and ILK. Integrin and ILK expression in epidermal growth factor (EGF)-induced EMT of the PMC42-ET breast cancer cell line was assessed by RT-qPCR and Western blotting, as were the effects of their transient knockdown via small interfering RNA +/- EGF. Cell migration, changes in cell morphology and adhesion of siRNA-transfected PMC42-ET cells to various extracellular matrix (ECM) substrates was assessed. RESULTS: The ED03 (ER+/PR-/HER2-/lobular) and EDW01 (ER+/PR-/HER2-/ductal) PDXs were both classified as molecular subtype luminal A. ED03 xenografts exhibited mutated E-cadherin with minimal expression, but remained vimentin-negative across all passages. In EDW01, the hypoxic indicator gene CAIX and Twist1 were co-ordinately upregulated at passages 4-5, corresponding with a decrease in E-cadherin. At passages 6-7, VIM was upregulated along with ITGB1 and ITGA2, consistent with an increasing EMT. The ED03 PDX displayed minimal change over passages in mice, for all genes examined. ILK, ITGB1 and ITGA2 mRNAs were also increased in the EGF-induced EMT of PMC42-ET cells (in which CDH1 was downregulated) although siRNA against these targets revealed that this induction was not necessary for the observed EMT. However, their knockdown significantly reduced EMT-associated adhesion and Transwell migration. CONCLUSION: Our data suggest that despite an increase in ITGA2 and ITGB1 gene expression in the EMT exhibited by EDW01 PDX over multiple generations, this pathway may not necessarily drive the EMT process.
Assuntos
Neoplasias Ósseas/genética , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Transição Epitelial-Mesenquimal/genética , Integrina alfa2/genética , Integrina beta1/genética , Adulto , Animais , Neoplasias Ósseas/secundário , Mama/patologia , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/secundário , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Regulação para Cima , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS: Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS: These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS: These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Animais , Apoptose/fisiologia , Neoplasias da Mama/patologia , Carcinoma Basocelular/patologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Proteogenômica , Células Tumorais CultivadasRESUMO
BACKGROUND: Metaplastic breast carcinoma encompasses a heterogeneous group of tumours with differentiation into squamous and/or spindle, chondroid, osseous or rhabdoid mesenchymal-looking elements. Emerging immunotherapies targeting Programmed Death Ligand 1 (PD-L1) and immune-suppressing T cells (Tregs) may benefit metaplastic breast cancer patients, which are typically chemo-resistant and do not express hormone therapy targets. METHODS: We evaluated the immunohistochemical expression of PD-L1 and FOXP3, and the extent of tumour infiltrating lymphocytes (TILs) in a large cohort of metaplastic breast cancers, with survival data. RESULTS: Metaplastic breast cancers were significantly enriched for PD-L1 positive tumour cells, compared to triple-negative ductal breast cancers (P < 0.0001), while there was no significant difference in PD-L1 positive TILs. Metaplastic breast cancers were also significantly enriched for TILs expressing FOXP3, with FOXP3 positive intra-tumoural TILs (iTILs) associated with an adverse prognostic outcome (P = 0.0226). Multivariate analysis identified FOXP3 iTILs expression status as an important independent prognostic factor for patient survival. CONCLUSIONS: Our findings indicate the clinical significance and prognostic value of FOXP3, PD-1/PD-L1 checkpoint and TILs in metaplastic breast cancer and confirm that a subset of metaplastics may benefit from immune-based therapies.
Assuntos
Antígeno B7-H1/biossíntese , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/patologia , Fatores de Transcrição Forkhead/biossíntese , Adulto , Idoso , Neoplasias da Mama/imunologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Linfócitos do Interstício Tumoral/imunologia , Metaplasia , Pessoa de Meia-IdadeRESUMO
Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.
Assuntos
Adenocarcinoma/genética , Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Pólipos Adenomatosos/genética , Éxons/genética , Mutação Puntual/genética , Neoplasias Gástricas/genética , Desequilíbrio Alélico/genética , Variações do Número de Cópias de DNA/genética , Exoma/genética , Feminino , Mucosa Gástrica/metabolismo , Ligação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Perda de Heterozigosidade , Masculino , Linhagem , Regiões Promotoras Genéticas/genéticaRESUMO
Mixed ductal-lobular carcinomas (MDLs) show both ductal and lobular morphology, and constitute an archetypal example of intratumoural morphological heterogeneity. The mechanisms underlying the coexistence of these different morphological entities are poorly understood, although theories include that these components either represent 'collision' of independent tumours or evolve from a common ancestor. We performed comprehensive clinicopathological analysis of a cohort of 82 MDLs, and found that: (1) MDLs more frequently coexist with ductal carcinoma in situ (DCIS) than with lobular carcinoma in situ (LCIS); (2) the E-cadherin-catenin complex was normal in the ductal component in 77.6% of tumours; and (3) in the lobular component, E-cadherin was almost always aberrantly located in the cytoplasm, in contrast to invasive lobular carcinoma (ILC), where E-cadherin is typically absent. Comparative genomic hybridization and multiregion whole exome sequencing of four representative cases revealed that all morphologically distinct components within an individual case were clonally related. The mutations identified varied between cases; those associated with a common clonal ancestry included BRCA2, TBX3, and TP53, whereas those associated with clonal divergence included CDH1 and ESR1. Together, these data support a model in which separate morphological components of MDLs arise from a common ancestor, and lobular morphology can arise via a ductal pathway of tumour progression. In MDLs that present with LCIS and DCIS, the clonal divergence probably occurs early, and is frequently associated with complete loss of E-cadherin expression, as in ILC, whereas, in the majority of MDLs, which present with DCIS but not LCIS, direct clonal divergence from the ductal to the lobular phenotype occurs late in tumour evolution, and is associated with aberrant expression of E-cadherin. The mechanisms driving the phenotypic change may involve E-cadherin-catenin complex deregulation, but are yet to be fully elucidated, as there is significant intertumoural heterogeneity, and each case may have a unique molecular mechanism. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Assuntos
Carcinoma de Mama in situ/patologia , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Neoplasias Complexas Mistas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/análise , Antígenos CD/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma de Mama in situ/química , Carcinoma de Mama in situ/genética , Neoplasias da Mama/química , Neoplasias da Mama/genética , Caderinas/análise , Caderinas/genética , Carcinoma Intraductal não Infiltrante/química , Carcinoma Intraductal não Infiltrante/genética , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Progressão da Doença , Feminino , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Mutação , Neoplasias Complexas Mistas/química , Neoplasias Complexas Mistas/genética , Fenótipo , Sequenciamento do ExomaRESUMO
BACKGROUND: Next-generation sequencing (NGS) in lung cancer specimens from endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is usually performed on formalin-fixed paraffin-embedded cell block material. OBJECTIVES: Since DNA can be damaged by this process, we investigated the potential of using DNA extracted from Diff-Quik cytology smears made for rapid on-site evaluation during EBUS-TBNA. METHODS: In a prospective study, 67 patients undergoing diagnostic EBUS-TBNA were ana-lysed. We compared cell blocks and smears for DNA yields and sequencing (TruSeq Amplicon Cancer Panel) outcomes. Smears were also evaluated for tumour cell fraction and overall cellularity (cell count). RESULTS: Primary lung cancer was diagnosed in 64 patients and metastatic malignancy in 3 patients. The DNA yield from smears was significantly higher than that obtained from matched cell blocks (mean 1,740 vs. 434 ng; p = 0.001). For 33 cases with matched smears and cell blocks the mutation profiles were similar. Smears with abundant malignant cells (using a cut-off of > 25% tumour cell fraction and > 1,000 cells) accurately predicted high (> 50 ng) DNA yield and therefore success in triaging samples to sequencing. In terms of tissue workflow, using only smears as source DNA for sequencing was an improvement in the use of only cell blocks (54/67 [80.6%] vs. 41/67 [61.2%]); however, the use of cell blocks when smears were not available or did not yield sufficient DNA further improved the success rate to 62/67 (92.5%) cases. CONCLUSION: We recommend smears in laboratory workflows as the primary source of DNA for NGS following an EBUS procedure.
Assuntos
Corantes Azur , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Azul de Metileno , Xantenos , Idoso , Idoso de 80 Anos ou mais , Endossonografia , Feminino , Humanos , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
PURPOSE: We aimed to generate and characterize a novel cell line from a breast cancer bone metastasis to better study the progression of the disease. METHODS: The cell line, P7731, was derived from a metastatic bone lesion of a breast cancer patient and assessed for marker expression. P7731 was analyzed for DNA copy number variation, somatic mutations, and gene expression and was compared with the primary tumor. RESULTS: P7731 cells are negative for estrogen receptor alpha (ERα), progesterone receptor (PR), and HER2 (triple-negative); strongly express vimentin (100% of cells positive) and also express cytokeratins 8/18 and 19 but at lower frequencies. Flow cytometry indicates P7731 cells are predominantly CD44+/CD49f+/EpCAM-, consistent with a primitive, mesenchymal-like phenotype. The cell line is tumorigenic in immunocompromised mice. Exome sequencing identified a total of 45 and 76 somatic mutations in the primary tumor and cell line, respectively, of which 32 were identified in both samples and included mutations in known driver genes PIK3CA, TP53, and ARID1A. P7731 retains the DNA copy number alterations present in the matching primary tumor. Homozygous deletions detected in the cell line and in the primary tumor were found in regions containing three known (CDKN2A, CDKN2B, and CDKN1B) and 23 putative tumor suppressor genes. Cell line-specific gene amplification coupled with mRNA expression analysis revealed genes and pathways with potential pro-metastatic functions. CONCLUSION: This novel human breast cancer-bone metastasis cell line will be a useful model to study aspects of breast cancer biology, particularly metastasis-related changes from breast to bone.
Assuntos
Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proteínas de Neoplasias/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Mama/patologia , Variações do Número de Cópias de DNA/genética , Exoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Mutação , Neoplasias de Mama Triplo Negativas/genéticaRESUMO
PURPOSE: Cell lines are extremely useful tools in breast cancer research. Their key benefits include a high degree of control over experimental variables and reproducibility. However, the advantages must be balanced against the limitations of modelling such a complex disease in vitro. Informed selection of cell line(s) for a given experiment now requires essential knowledge about molecular and phenotypic context in the culture dish. METHODS: We performed multidimensional profiling of 36 widely used breast cancer cell lines that were cultured under standardised conditions. Flow cytometry and digital immunohistochemistry were used to compare the expression of 14 classical breast cancer biomarkers related to intrinsic molecular profiles and differentiation states: EpCAM, CD24, CD49f, CD44, ER, AR, HER2, EGFR, E-cadherin, p53, vimentin, and cytokeratins 5, 8/18 and 19. RESULTS: This cell-by-cell analysis revealed striking heterogeneity within cultures of individual lines that would be otherwise obscured by analysing cell homogenates, particularly amongst the triple-negative lines. High levels of p53 protein, but not RNA, were associated with somatic mutations (p = 0.008). We also identified new subgroups using the nanoString PanCancer Pathways panel (730 transcripts representing 13 canonical cancer pathways). Unsupervised clustering identified five groups: luminal/HER2, immortalised ('normal'), claudin-low and two basal clusters, distinguished mostly by baseline expression of TGF-beta and PI3-kinase pathway genes. CONCLUSION: These features are compared with other published genotype and phenotype information in a user-friendly reference table to help guide selection of the most appropriate models for in vitro and in vivo studies, and as a framework for classifying new patient-derived cancer cell lines and xenografts.
Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Heterogeneidade Genética , Proteínas de Neoplasias/genética , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Genótipo , Humanos , FenótipoRESUMO
AIMS: A better understanding of the expression of cancer/testis antigens (CTAs) in breast cancer might enable the identification of new immunotherapy options, especially for triple-negative (TN) tumours, which lack expression of the conventional therapeutic targets oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The aim of this study was to quantify the expression of MAGE-A and NY-ESO-1 CTAs in breast cancer, and relate this to known clinicopathological parameters. METHODS AND RESULTS: We surveyed MAGE-A and NY-ESO-1 expression in an unselected cohort of 367 breast tumours (of which 65 were TN), with accompanying clinical follow-up data, by using immunohistochemical analysis of tissue microarrays. Relevant to their potential as vaccine targets in breast cancer, MAGE-A was expressed in 13% of cases, and NY-ESO-1 in 3.8%, with the majority of tumours showing fairly homogeneous staining within individual tissue cores (~85% of cases with staining in >75% of tumour cells). Most NY-ESO-1-positive cases also expressed MAGE-A (P = 2.06 × 10-9 ), and both were strongly associated with the TN phenotype (P < 0.0001), with the most proliferative and poorly differentiated cases, in paticular, showing genomic instability. This was characterised by coexpression of c-Kit and TTK, and overexpression of p53. CONCLUSIONS: MAGE-A and NY-ESO-1 are frequently expressed in TN breast cancer (~47% and 17% of TN cases, respectively), suggesting that targeting them could be feasible in this patient group. Expression is reasonably homogeneous in positive cases, suggesting that immunohistochemical analysis of tissue biopsies would be a reliable companion biomarker.
Assuntos
Antígenos de Neoplasias/biossíntese , Biomarcadores Tumorais/análise , Antígenos Específicos de Melanoma/biossíntese , Proteínas de Membrana/biossíntese , Neoplasias de Mama Triplo Negativas/patologia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
The use of molecular signatures to add value to standard clinical and pathological parameters has impacted clinical practice in many cancer types, but perhaps most notably in the breast cancer field. This is, in part, due to the considerable complexity of the disease at the clinical, morphological and molecular levels. The adoption of molecular profiling of DNA, RNA and protein continues to reveal important differences in the intrinsic biology between molecular subtypes and has begun to impact the way patients are managed. Several bioinformatic tools have been developed using DNA or RNA-based signatures to stratify the disease into biologically and/or clinically meaningful subgroups. Here, we review the approaches that have been used to develop gene expression signatures into currently available diagnostic assays (e.g., OncotypeDX® and Mammaprint®), plus we describe the latest work on genome sequencing, the methodologies used in the discovery process of mutational signatures, and the potential of these signatures to impact the clinic.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Transcriptoma/genética , Neoplasias da Mama/patologia , Biologia Computacional , Feminino , Testes Genéticos/métodos , Humanos , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Sequenciamento Completo do Genoma/métodosRESUMO
Epithelial to mesenchymal transition (EMT) is a cellular phenotype switching phenomenon which occurs during normal development and is proposed to promote tumour cell invasive capabilities during tumour progression. Invasive lobular carcinoma (ILC) is a histological special type of breast cancer with a peculiar aetiology - the tumour cells display an invasive growth pattern, with detached, single cells or single files of cells, and a canonical feature is the loss of E-cadherin expression. These characteristics are indicative of an EMT or at the very least that they represent some plasticity between phenotypes. While some gene expression profiling data support this view, the tumour cells remain epithelial and limited immunohistochemistry data suggest that EMT markers may not feature prominently in ILC. We assessed the expression of a panel of EMT markers (fibronectin, vimentin, N-cadherin, smooth muscle actin, osteonectin, Snail, Twist) in 148 ILCs and performed a meta-analysis of publically available molecular data from 154 ILCs. Three out of 148 (2%) ILCs demonstrated an early and coordinated alteration of multiple EMT markers (down-regulation of E-cadherin, nuclear TWIST, and up-regulation of vimentin, osteonectin, and smooth muscle actin). However, the data overall do not support a role for EMT in defining the phenotypic peculiarities of the majority of ILCs. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Neoplasias da Mama/patologia , Carcinoma Lobular , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/fisiologia , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica/métodos , Invasividade Neoplásica , Fenótipo , Fatores de Transcrição/metabolismoRESUMO
Periostin (POSTN), a secreted homodimeric protein that binds integrins αvß3, αvß5, and α6ß4, was originally found to be expressed in fetal tissues and in the adult upon injury particularly bone fractures due to its role in remodelling and repair. Recently it was found to be over-expressed in human breast cancer and a variety of other tumour types including head and neck squamous cell carcinoma, where its overexpression correlates with increased tumour invasion. Progress in studying its functional role in tumour pathogenesis has been hampered by the paucity of antibodies for its specific and sensitive detection. It has proven very difficult to obtain monoclonal antibodies (mAbs) against this highly conserved protein but we report here that combining infection of mice with lactate dehydrogenase elevating virus (LDV), a B cell activating arterivirus, with conjugation of human POSTN to ovalbumin as an immunogenic carrier, enabled us to develop six mAbs recognizing both human and mouse POSTN and inhibiting its binding to αvß3 integrin. Two of the mAbs, MPB4B1 and MPC5B4, were tested and found to inhibit POSTN-induced migration of human endothelial colony forming cells. All six mAbs recognized amino acids 136-51 (APSNEAWDNLDSDIRR) within the POSTN fascilin (FAS) 1-1 domain revealing the functional importance of this motif; this was further highlighted by the ability of aa 136-151 peptide to inhibit integrin-mediated cell migration. Immunohistochemistry using MPC5B4, indicated that breast tumour cell POSTN expression was a strong prognostic indicator, along with tumour size, lymph node, and human epidermal growth factor receptor 2 (HER2) status.