Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Eur J Immunol ; 50(6): 822-838, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32092784

RESUMO

Immunoglobulin class switch recombination (CSR) occurs in activated B cells with increased mitochondrial mass and membrane potential. Transcription factor Yin Yang 1 (YY1) is critical for CSR and for formation of the DNA loops involved in this process. We therefore sought to determine if YY1 knockout impacts mitochondrial gene expression and mitochondrial function in murine splenic B cells, providing a potential mechanism for regulating CSR. We identified numerous genes in splenic B cells differentially regulated when cells are induced to undergo CSR. YY1 conditional knockout caused differential expression of 1129 genes, with 59 being mitochondrial-related genes. ChIP-seq analyses showed YY1 was directly bound to nearly half of these mitochondrial-related genes. Surprisingly, at the time when YY1 knockout dramatically reduces DNA loop formation and CSR, mitochondrial mass and membrane potential were not significantly impacted, nor was there a significant change in mitochondrial oxygen consumption, extracellular acidification rate, or mitochondrial complex I or IV activities. Our results indicate that YY1 regulates numerous mitochondrial-related genes in splenic B cells, but this does not account for the impact of YY1 on CSR or long-distance DNA loop formation.


Assuntos
Linfócitos B/imunologia , DNA Mitocondrial/imunologia , Genes Mitocondriais/imunologia , Switching de Imunoglobulina , Baço/imunologia , Fator de Transcrição YY1/imunologia , Animais , Linfócitos B/citologia , DNA Mitocondrial/genética , Camundongos , Camundongos Knockout , Baço/citologia , Fator de Transcrição YY1/genética
2.
PLoS Genet ; 13(10): e1007050, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28991910

RESUMO

X-chromosome inactivation (XCI) in female lymphocytes is uniquely regulated, as the inactive X (Xi) chromosome lacks localized Xist RNA and heterochromatin modifications. Epigenetic profiling reveals that Xist RNA is lost from the Xi at the pro-B cell stage and that additional heterochromatic modifications are gradually lost during B cell development. Activation of mature B cells restores Xist RNA and heterochromatin to the Xi in a dynamic two-step process that differs in timing and pattern, depending on the method of B cell stimulation. Finally, we find that DNA binding domain of YY1 is necessary for XCI in activated B cells, as ex-vivo YY1 deletion results in loss of Xi heterochromatin marks and up-regulation of X-linked genes. Ectopic expression of the YY1 zinc finger domain is sufficient to restore Xist RNA localization during B cell activation. Together, our results indicate that Xist RNA localization is critical for maintaining XCI in female lymphocytes, and that chromatin changes on the Xi during B cell development and the dynamic nature of YY1-dependent XCI maintenance in mature B cells predisposes X-linked immunity genes to reactivation.


Assuntos
Inativação Gênica , Ativação Linfocitária/genética , Células Precursoras de Linfócitos B/metabolismo , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética , Fator de Transcrição YY1/metabolismo , Animais , Epigênese Genética , Feminino , Deleção de Genes , Genes Ligados ao Cromossomo X , Heterocromatina/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/isolamento & purificação , Análise de Sequência de RNA , Baço/citologia , Regulação para Cima , Cromossomo X/genética , Fator de Transcrição YY1/genética
3.
J Immunol ; 195(7): 3449-62, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26320247

RESUMO

The HuR RNA-binding protein posttranscriptionally controls expression of genes involved in cellular survival, proliferation, and differentiation. To determine roles of HuR in B cell development and function, we analyzed mice with B lineage-specific deletion of the HuR gene. These HuRΔ/Δ mice have reduced numbers of immature bone marrow and mature splenic B cells, with only the former rescued by p53 inactivation, indicating that HuR supports B lineage cells through developmental stage-specific mechanisms. Upon in vitro activation, HuRΔ/Δ B cells have a mild proliferation defect and impaired ability to produce mRNAs that encode IgH chains of secreted Abs, but no deficiencies in survival, isotype switching, or expression of germinal center (GC) markers. In contrast, HuRΔ/Δ mice have minimal serum titers of all Ab isotypes, decreased numbers of GC and plasma B cells, and few peritoneal B-1 B cells. Moreover, HuRΔ/Δ mice have severely decreased GCs, T follicular helper cells, and high-affinity Abs after immunization with a T cell-dependent Ag. This failure of HuRΔ/Δ mice to mount a T cell-dependent Ab response contrasts with the ability of HuRΔ/Δ B cells to become GC-like in vitro, indicating that HuR is essential for aspects of B cell activation unique to the in vivo environment. Consistent with this notion, we find in vitro stimulated HuRΔ/Δ B cells exhibit modestly reduced surface expression of costimulatory molecules whose expression is similarly decreased in humans with common variable immunodeficiency. HuRΔ/Δ mice provide a model to identify B cell-intrinsic factors that promote T cell-dependent immune responses in vivo.


Assuntos
Linfócitos B/imunologia , Proteína Semelhante a ELAV 1/biossíntese , Ativação Linfocitária/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos B/citologia , Células da Medula Óssea/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Proliferação de Células/genética , Proteína Semelhante a ELAV 1/genética , Centro Germinativo/imunologia , Cadeias Pesadas de Imunoglobulinas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/biossíntese , Proteína Supressora de Tumor p53/genética
4.
J Immunol ; 194(9): 4362-70, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25821220

RESUMO

Regulatory T cells (Tregs) are a subset of CD4(+) T cells that maintain immune tolerance in part by their ability to inhibit the proliferation of conventional CD4(+) T cells (Tconvs). The role of the TCR and the downstream signaling pathways required for this suppressive function of Tregs are not fully understood. To yield insight into how TCR-mediated signals influence Treg suppressive function, we assessed the ability of Tregs with altered TCR-mediated signaling capacity to inhibit Tconv proliferation. Mature Tregs deficient in Src homology 2 domain containing leukocyte protein of 76 kDa (SLP-76), an adaptor protein that nucleates the proximal signaling complex downstream of the TCR, were unable to inhibit Tconv proliferation, suggesting that TCR signaling is required for Treg suppressive function. Moreover, Tregs with defective phospholipase C γ (PLCγ) activation due to a Y145F mutation of SLP-76 were also defective in their suppressive function. Conversely, enhancement of diacylglycerol-mediated signaling downstream of PLCγ by genetic ablation of a negative regulator of diacylglycerol kinase ζ increased the suppressive ability of Tregs. Because SLP-76 is also important for integrin activation and signaling, we tested the role of integrin activation in Treg-mediated suppression. Tregs lacking the adaptor proteins adhesion and degranulation promoting adapter protein or CT10 regulator of kinase/CT10 regulator of kinase-like, which are required for TCR-mediated integrin activation, inhibited Tconv proliferation to a similar extent as wild-type Tregs. Together, these data suggest that TCR-mediated PLCγ activation, but not integrin activation, is required for Tregs to inhibit Tconv proliferation.


Assuntos
Imunomodulação , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diglicerídeos/metabolismo , Integrinas/metabolismo , Camundongos , Camundongos Transgênicos , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfócitos T/genética
5.
Arthritis Rheum ; 65(4): 1043-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23334904

RESUMO

OBJECTIVE: To determine the necessity for any individual BAFF receptor in the development of systemic lupus erythematosus (SLE). METHODS: Bcma-, Taci-, and Br3-null mutations were introgressed into NZM 2328 mice. NZM.Bcma-/-, NZM.Taci-/-, and NZM.Br3-/- mice were evaluated for lymphocyte phenotype and BAFF receptor expression by flow cytometry; for B cell responsiveness to BAFF by in vitro culture; for serum levels of BAFF and total IgG and IgG anti-double-stranded DNA (anti-dsDNA) by enzyme-linked immunosorbent assay; for renal immunopathology by immunofluorescence and histopathology; and for clinical disease. RESULTS: BCMA, TACI, and B lymphocyte stimulator receptor 3 (BR3) were not surface-expressed in NZM.Bcma-/-, NZM.Taci-/-, and NZM.Br3-/- mice, respectively. Transitional and follicular B cells from NZM.Br3-/- mice were much less responsive to BAFF than were the corresponding cells from wild-type, NZM.Bcma-/-, or NZM.Taci-/- mice. In comparison with wild-type mice, NZM.Bcma-/- and NZM.Taci-/- mice harbored an increased number of spleen B cells, T cells, and plasma cells, whereas serum levels of total IgG and IgG anti-dsDNA were similar to those in wild-type mice. Despite their paucity of B cells, NZM.Br3-/- mice had an increased number of T cells, and the numbers of plasma cells and levels of IgG anti-dsDNA were similar to those in wild-type mice. Serum levels of BAFF were increased in NZM.Taci-/- and NZM.Br3-/- mice but were decreased in NZM.Bcma-/- mice. Despite their phenotypic differences, NZM.Bcma-/-, NZM.Taci-/-, and NZM.Br3-/- mice had renal immunopathology and clinical disease that were at least as severe as that in wild-type mice. CONCLUSION: Any single BAFF receptor, including BR3, is dispensable for the development of SLE in NZM mice. Development of disease in NZM.Br3-/- mice demonstrates that BAFF-BCMA and/or BAFF-TACI interactions contribute to SLE, and that a profound, life-long reduction in the numbers of B cells does not guarantee protection against SLE.


Assuntos
Antígeno de Maturação de Linfócitos B/metabolismo , Subpopulações de Linfócitos B , Lúpus Eritematoso Sistêmico/metabolismo , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Animais , Anticorpos Antinucleares , Fator Ativador de Células B/farmacologia , Receptor do Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/metabolismo , Antígeno de Maturação de Linfócitos B/genética , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/efeitos dos fármacos , Subpopulações de Linfócitos B/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Rim/imunologia , Rim/metabolismo , Rim/patologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Congênicos , Proteína Transmembrana Ativadora e Interagente do CAML/genética
6.
J Immunol ; 189(7): 3355-67, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22942427

RESUMO

Dendritic cells (DCs) play an essential role in regulation of immune responses. In the periphery, Ag presentation by DCs is critical for adaptive responses; for this reason, DCs are often targets of adjuvants that enhance vaccine responses. Activated mature DCs enhance B cell activation and differentiation by providing cytokines like BAFF and a proliferation-inducing ligand. However, the role of immature DCs in B cell tolerance is not well studied. Recently, mouse immature bone marrow-derived DCs (iBMDCs) have been shown to suppress anti-IgM-induced B cell activation. In this study, we tested the ability of mouse DCs to modulate B cell functions during TLR activation. We found that iBMDCs potently suppressed proliferation and differentiation of various B cell subsets on TLR stimulation. However, iBMDCs did not affect CD40-mediated B cell activation. Optimal suppression of B cell activation by iBMDCs required cell contact via the CD22 receptor on B cells. The B cell suppression was a property of iBMDCs or DCs resident in the bone marrow (BM), but not mature BM-derived DCs or DCs resident in the spleen. Presence of iBMDCs also enhanced the Ag-induced apoptotic response of BM B cells, suggesting that the suppressive effects of iBMDCs may have a role in B cell tolerance.


Assuntos
Subpopulações de Linfócitos B/imunologia , Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/imunologia , Animais , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/antagonistas & inibidores , Receptores de Antígenos de Linfócitos B/fisiologia , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Baço/citologia , Baço/imunologia , Baço/metabolismo
7.
Mol Cancer ; 8: 132, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20043832

RESUMO

BACKGROUND: Previously we have shown that B cell receptor (BCR) expression and B cell receptor signaling pathways are important for the basal growth of B lymphoma cells. In particular we have shown that the activation of Syk, a non-src family protein tyrosine kinase and the mitogen activated protein kinases (MAPK), ERK and JNK that mediate BCR signals are required for the constitutive growth of B lymphoma cells. Since src family protein tyrosine kinases (SFKs) like Lyn are known to be needed for the phosphorylation of BCR co-receptors, Ig-alpha and Ig-beta, we hypothesized that one or more SFKs will be constitutively activated in B lymphoma cells and may be necessary for B lymphoma growth. RESULTS: Src kinase activity was found to be constitutively high in many murine and human B lymphoma cell lines and primary lymphoma samples. The specific pharmacological inhibitors of SFKs, PP1 and PP2 inhibited the proliferation of a number of both murine and human B lymphomas in a dose-dependent manner. Importantly, dasatinib (BMS-354825), an oral dual BCR-ABL and SFK specific inhibitor inhibited the growth of B lymphomas in the nanomolar range in vitro and strongly inhibited a mouse lymphoma growth in vivo. Among the SFKs, Lyn is predominantly phosphorylated and Lyn-specific small interfering RNA inhibited the growth of B lymphomas, supporting an important role for Lyn in B lymphoma growth. Suppression of SFK activity blocks BCR mediated signaling pathways. PMA or CpG can partially reverse the growth inhibition induced by SFK inhibition. Although blocking SFK activity inhibited the growth of a number of B lymphomas, some lymphomas such as SudHL-4, SudHL-6, OCI-Ly3 and OCI-Ly10 are more resistant due to an increased expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL. CONCLUSIONS: These studies further support our concept that BCR signaling pathways are important for the continued growth of established B lymphoma cells. Some of the intermediates in this BCR pathway are potential immunotherapeutic targets. In particular, inhibition of SFK activity alone or in synergy with inhibition of the prosurvival Bcl-2 proteins holds promise in developing more effective treatments for B lymphoma patients.


Assuntos
Linfoma de Células B/enzimologia , Quinases da Família src/metabolismo , Animais , Sobrevivência Celular , Dasatinibe , Humanos , Linfoma de Células B/patologia , Camundongos , Pirimidinas/metabolismo , Pirimidinas/farmacologia , RNA Interferente Pequeno/metabolismo , Tiazóis/metabolismo , Tiazóis/farmacologia
8.
JCI Insight ; 4(7)2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30944248

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disorder that predominantly affects women and is driven by autoreactive T cell-mediated inflammation. It is known that individuals with multiple X-chromosomes are at increased risk for developing SLE; however, the mechanisms underlying this genetic basis are unclear. Here, we use single cell imaging to determine the epigenetic features of the inactive X (Xi) in developing thymocytes, mature T cell subsets, and T cells from SLE patients and mice. We show that Xist RNA and heterochromatin modifications transiently reappear at the Xi and are missing in mature single positive T cells. Activation of mature T cells restores Xist RNA and heterochromatin marks simultaneously back to the Xi. Notably, X-chromosome inactivation (XCI) maintenance is altered in T cells of SLE patients and late-stage-disease NZB/W F1 female mice, and we show that X-linked genes are abnormally upregulated in SLE patient T cells. SLE T cells also have altered expression of XIST RNA interactome genes, accounting for perturbations of Xi epigenetic features. Thus, abnormal XCI maintenance is a feature of SLE disease, and we propose that Xist RNA localization at the Xi could be an important factor for maintaining dosage compensation of X-linked genes in T cells.


Assuntos
Autoimunidade/genética , Lúpus Eritematoso Sistêmico/genética , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Inativação do Cromossomo X/imunologia , Animais , Criança , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Feminino , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária , Masculino , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA-Seq , Fatores Sexuais , Análise de Célula Única , Baço/citologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo
9.
Front Immunol ; 9: 3087, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671059

RESUMO

In females, the long non-coding RNA Xist drives X-chromosome Inactivation (XCI) to equalize X-linked gene dosage between sexes. Unlike other somatic cells, dynamic regulation of Xist RNA and heterochromatin marks on the inactive X (Xi) in female lymphocytes results in biallelic expression of some X-linked genes, including Tlr7, Cxcr3, and Cd40l, implicated in sex-biased autoimmune diseases. We now find that while Xist RNA is dispersed across the nucleus in NK cells and dendritic cells (DCs) and partially co-localizes with H3K27me3 in bone marrow-derived macrophages, it is virtually absent in plasmacytoid DCs (p-DCs). Moreover, H3K27me3 foci are present in only 10-20% of cells and we observed biallelic expression of Tlr7 in p-DCs from wildtype mice and NZB/W F1 mice. Unlike in humans, mouse p-DCs do not exhibit sex differences with interferon alpha production, and interferon signature gene expression in p-DCs is similar between males and females. Despite the absence of Xist RNA from the Xi, female p-DCs maintain dosage compensation of six immunity-related X-linked genes. Thus, immune cells use diverse mechanisms to maintain XCI which could contribute to sex-linked autoimmune diseases.


Assuntos
Células Dendríticas/fisiologia , Epigênese Genética , Variação Genética , Células Matadoras Naturais/fisiologia , Macrófagos/fisiologia , Inativação do Cromossomo X/genética , Cromossomo X/genética , Análise de Variância , Animais , Núcleo Celular/metabolismo , Mecanismo Genético de Compensação de Dose , Feminino , Regulação da Expressão Gênica , Genes Ligados ao Cromossomo X , Heterocromatina/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NZB , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Baço/citologia , Receptor 7 Toll-Like/metabolismo
10.
J Clin Invest ; 127(5): 1651-1663, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28346226

RESUMO

Mature B cell pools retain a substantial proportion of polyreactive and self-reactive clonotypes, suggesting that activation checkpoints exist to reduce the initiation of autoreactive B cell responses. Here, we have described a relationship among the B cell receptor (BCR), TLR9, and cytokine signals that regulate B cell responses to DNA-containing antigens. In both mouse and human B cells, BCR ligands that deliver a TLR9 agonist induce an initial proliferative burst that is followed by apoptotic death. The latter mechanism involves p38-dependent G1 cell-cycle arrest and subsequent intrinsic mitochondrial apoptosis and is shared by all preimmune murine B cell subsets and CD27- human B cells. Survival or costimulatory signals rescue B cells from this fate, but the outcome varies depending on the signals involved. B lymphocyte stimulator (BLyS) engenders survival and antibody secretion, whereas CD40 costimulation with IL-21 or IFN-γ promotes a T-bet+ B cell phenotype. Finally, in vivo immunization studies revealed that when protein antigens are conjugated with DNA, the humoral immune response is blunted and acquires features associated with T-bet+ B cell differentiation. We propose that this mechanism integrating BCR, TLR9, and cytokine signals provides a peripheral checkpoint for DNA-containing antigens that, if circumvented by survival and differentiative cues, yields B cells with the autoimmune-associated T-bet+ phenotype.


Assuntos
Antígenos/imunologia , Linfócitos B/imunologia , DNA/imunologia , Pontos de Checagem da Fase G1 do Ciclo Celular/imunologia , Receptor Toll-Like 9/imunologia , Animais , Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Antígenos CD40/genética , Antígenos CD40/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Interferon gama/genética , Interferon gama/imunologia , Interleucinas/genética , Interleucinas/imunologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Receptor Toll-Like 9/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
11.
PLoS One ; 11(5): e0155311, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27167731

RESUMO

YY1 has been implicated as a master regulator of germinal center B cell development as YY1 binding sites are frequently present in promoters of germinal center-expressed genes. YY1 is known to be important for other stages of B cell development including the pro-B and pre-B cells stages. To determine if YY1 plays a critical role in germinal center development, we evaluated YY1 expression during B cell development, and used a YY1 conditional knock-out approach for deletion of YY1 in germinal center B cells (CRE driven by the immunoglobulin heavy chain γ1 switch region promoter; γ1-CRE). We found that YY1 is most highly expressed in germinal center B cells and is increased 3 fold in splenic B cells activated by treatment with anti-IgM and anti-CD40. In addition, deletion of the yy1 gene by action of γ1-CRE recombinase resulted in significant loss of GC cells in both un-immunized and immunized contexts with corresponding loss of serum IgG1. Our results show a crucial role for YY1 in the germinal center reaction.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Células Precursoras de Linfócitos B/imunologia , Baço/imunologia , Fator de Transcrição YY1/genética , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Anticorpos Monoclonais/farmacologia , Linfócitos B/citologia , Diferenciação Celular , Técnicas de Inativação de Genes , Centro Germinativo/citologia , Imunoglobulina G/sangue , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Integrases/genética , Integrases/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Células Precursoras de Linfócitos B/citologia , Regiões Promotoras Genéticas , Baço/citologia , Fator de Transcrição YY1/deficiência , Fator de Transcrição YY1/imunologia
12.
Arthritis Rheumatol ; 67(9): 2523-35, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25989238

RESUMO

OBJECTIVE: To determine the development of systemic lupus erythematosus (SLE) in NZM 2328 (NZM) mice deficient in 2 BAFF receptors. METHODS: NZM.BR-3(-/-) .BCMA(-/-) , NZM.BR-3(-/-) .TACI(-/-) , and NZM.BCMA(-/-) .TACI(-/-) mice were evaluated on the clinical, pathologic, serologic, and cellular levels. BAFF receptor expression and lymphocyte phenotype were assessed by flow cytometry, IgG-secreting cells by enzyme-linked immunospot assay, B cell responsiveness to BAFF and generation of Treg cells by in vitro culture, serum BAFF and total IgG and IgG autoantibody levels by enzyme-linked immunosorbent assay, renal immunopathology by immunofluorescence and histologic analyses, and clinical disease by assessment of proteinuria and mortality. RESULTS: Renal immunopathology and clinical disease were attenuated in NZM.BR-3(-/-) .BCMA(-/-) and NZM.BR-3(-/-) .TACI(-/-) mice but were accelerated in NZM.BCMA(-/-) .TACI(-/-) mice. Accelerated disease was associated with increases in B cells, IgG-secreting cells, serum autoantibody levels, and T cells (especially CD4+ activated memory cells), whereas attenuated disease was associated with reductions in many of these parameters. Serum BAFF levels were increased in all double-deficient NZM mice. Exogenous BAFF promoted the in vitro survival of B cells from NZM.BCMA(-/-) .TACI(-/-) or NZM wild-type mice but not those from NZM.BR-3(-/-) .BCMA(-/-) or NZM.BR-3(-/-) .TACI(-/-) mice. In vitro generation of Treg cells was reduced in NZM.BCMA(-/-) .TACI(-/-) mice, but not in NZM.BR-3(-/-) .BCMA(-/-) or NZM.BR-3(-/-) .TACI(-/-) mice. CONCLUSION: Elimination of B lymphocyte stimulator receptor 3 (BR-3) and TACI or BR-3 and BCMA inhibits the development of SLE in NZM mice. Selective targeting of BR-3 plus TACI or BR-3 plus BCMA may be an efficacious therapeutic approach in human SLE.


Assuntos
Receptor do Fator Ativador de Células B/genética , Antígeno de Maturação de Linfócitos B/genética , Linfócitos B/imunologia , Rim/patologia , Lúpus Eritematoso Sistêmico/genética , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Animais , Autoanticorpos/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Rim/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Camundongos Endogâmicos
13.
Ann N Y Acad Sci ; 1362: 239-249, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26096907

RESUMO

B-1 cells are considered innate immune cells, which produce the majority of natural antibodies. B-1 cell responses to B cell receptor (BCR) and Toll-like receptor ligation are tightly regulated owing to the cross-reactivity to self-antigens. CD5 has been shown to play a major role in downregulation of BCR responses in B-1 cells. Here, we provide evidence for another mechanism by which BCR response is regulated in B-1 cells. B-1 cells, as well as their malignant counterpart, B cell chronic lymphocytic leukemia (B-CLL) cells, produce interleukin-10 (IL-10) constitutively. IL-10 secretion by normal B-1 cells downregulates their proliferation responses to BCR ligation. However, we found that CLL cells appear to be unique in not responding to IL-10-mediated feedback-suppressive effects in comparison to normal B-1 cells. In addition, we describe a novel role of the BCR signaling pathway in constitutive IL-10 secretion by normal and malignant B-1 cells. We found that inhibition of Src family kinases, spleen tyrosine kinase, Syk, or Bruton's tyrosine kinase reduces constitutive IL-10 production by both normal and malignant B-1 cells.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Interleucina-10/biossíntese , Leucemia Linfocítica Crônica de Células B/metabolismo , Receptores de Antígenos de Linfócitos B/fisiologia , Transdução de Sinais/fisiologia , Animais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/patologia , Células Cultivadas , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Immunol Lett ; 160(2): 120-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24512739

RESUMO

BLyS (B lymphocyte stimulator) family cytokines and receptors play key roles in B-2 cell maturation and survival, but their importance for B-1 cells remains less clear. Here we use knockout mice to show that APRIL (A proliferation-inducing ligand), but not BLyS, plays a role in peritoneal B-1 cell maintenance. APRIL likely exerts its effects on peritoneal B-1 cells through binding to HSPG (heparan sulfate proteoglycans) rather than to the TACI (transmembrane activator and cyclophilin ligand interactor) receptor. Finally, we show that peritoneal macrophages express high levels of APRIL message, and are a likely local source of the cytokine in this anatomic locale.


Assuntos
Subpopulações de Linfócitos B/imunologia , Proteoglicanas de Heparan Sulfato/imunologia , Homeostase/imunologia , Imunidade Humoral , RNA Mensageiro/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Animais , Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Subpopulações de Linfócitos B/citologia , Proliferação de Células , Regulação da Expressão Gênica , Proteoglicanas de Heparan Sulfato/metabolismo , Homeostase/genética , Imunofenotipagem , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Knockout , Peritônio/citologia , Peritônio/imunologia , Ligação Proteica , RNA Mensageiro/genética , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/imunologia , Transdução de Sinais , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
15.
Cytokine Growth Factor Rev ; 25(2): 107-13, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24507939

RESUMO

BLyS family members govern selection and survival of cells in the pre-immune B cell compartment, and emerging evidence suggests similar roles in antigen-experienced B cell pools. We review the features of this family, with particular emphasis on recent findings of how BLyS influences affinity maturation in germinal centers, which lie at the intersection of the pre-immune and antigen-experienced B cell compartments. We propose a model whereby tolerogenic selection at the transitional stage and affinity maturation in the germinal center employ the same BLyS driven mechanism.


Assuntos
Apresentação de Antígeno/imunologia , Fator Ativador de Células B/imunologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Sobrevivência Celular/imunologia , Centro Germinativo/imunologia , Humanos , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia
16.
J Leukoc Biol ; 95(3): 471-85, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24295831

RESUMO

Mucosal DCs play a critical role in tissue homeostasis. Several stimuli can induce a mucosal phenotype; however, molecular pathways that regulate development of mucosal DC function are relatively unknown. This study sought to determine whether PPARγ contributes to the development of the "mucosal" phenotype in mouse DCs. Experiments demonstrated that PPARγ activation in BMDCs induced an immunosuppressive phenotype in which BMDCs had reduced expression of MHC class II and costimulatory molecules, increased IL-10 secretion, and reduced the ability to induce CD4 T cell proliferation. Activation of PPARγ enhanced the ability of BMDC to polarize CD4 T cells toward iTregs and to induce T cell expression of the mucosal homing receptor, CCR9. Activation of PPARγ increased the ability of BMDCs to induce T cell-independent IgA production in B cells. BMDCs from PPARγ(ΔDC) mice displayed enhanced expression of costimulatory molecules, enhanced proinflammatory cytokine production, and decreased IL-10 synthesis. Contrary to the inflammatory BMDC phenotype in vitro, PPARγ(ΔDC) mice showed no change in the frequency or phenotype of mDC in the colon. In contrast, mDCs in the lungs were increased significantly in PPARγ(ΔDC) mice. A modest increase in colitis severity was observed in DSS-treated PPARγ(ΔDC) mice compared with control. These results indicate that PPARγ activation induces a mucosal phenotype in mDCs and that loss of PPARγ promotes an inflammatory phenotype. However, the intestinal microenvironment in vivo can maintain the mucosal DC phenotype of via PPARγ-independent mechanisms.


Assuntos
Diferenciação Celular/imunologia , Microambiente Celular/imunologia , Células Dendríticas/imunologia , Imunidade nas Mucosas/imunologia , PPAR gama/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Linfócitos T/citologia , Linfócitos T/imunologia
17.
Front Immunol ; 4: 37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23443938

RESUMO

B-1 and B-2 B cell populations have different progenitors, receptor diversity, anatomic location, and functions - suggesting vastly differing requisites for homeostatic regulation. There is evidence that the B lymphocyte stimulator (BLyS) family of cytokines and receptors, key factors in the homeostatic regulation of B-2 B cell subsets, is also a major player in the B-1 compartment. Here we review the development and differentiation of these two primary B cell lineages and their immune functions. We discuss evidence that BLyS or a proliferation-inducing ligand (APRIL) availability in different anatomic sites, coupled with signature BLyS receptor expression patterns on different B cell subsets, may be important for homeostatic regulation of B-1 as well as B-2 populations. Finally, we extend our working model of B cell homeostasis to integrate B-1s.

18.
Front Immunol ; 3: 372, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251136

RESUMO

B-1 cells constitute a unique subset of B cells identified in several species including mice and humans. B-1 cells are further subdivided into B-1a and B-1b subsets as the former but not the later express CD5. The B-1a subset contributes to innate type of immune responses while the B-1b B cell subset contributes to adaptive responses. B-1 cell responses to B cell receptor (BCR) as well as Toll-like receptor (TLR) ligation are tightly regulated due to the cross-reactivity of antigen specific receptors on B-1 cells to self-antigens. B-1 cells are elevated in several autoimmune diseases. CD5 plays a major role in down regulation of BCR responses in the B-1a cell subset. Reduced amplification of BCR induced signals via CD19 and autoregulation of BCR and TLR responses by B-1 cell produced IL-10 appear to have a role in regulation of both B-1a and B-1b B cell responses. Siglec G receptors and Lyn kinase also regulate B-1 cell responses but their differential role in the two B-1 cell subsets is unknown.

20.
PLoS One ; 5(7): e11445, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20625435

RESUMO

B cells are typically characterized as positive regulators of the immune response, primarily by producing antibodies. However, recent studies indicate that various subsets of B cells can perform regulatory functions mainly through IL-10 secretion. Here we discovered that peritoneal B-1 (B-1P) cells produce high levels of IL-10 upon stimulation with several Toll-like receptor (TLR) ligands. High levels of IL-10 suppressed B-1P cell proliferation and differentiation response to all TLR ligands studied in an autocrine manner in vitro and in vivo. IL-10 that accumulated in cultures inhibited B-1P cells at second and subsequent cell divisions mainly at the G1/S interphase. IL-10 inhibits TLR induced B-1P cell activation by blocking the classical NF-kappaB pathway. Co-stimulation with CD40 or BAFF abrogated the IL-10 inhibitory effect on B-1P cells during TLR stimulation. Finally, B-1P cells adoptively transferred from the peritoneal cavity of IL-10(-/-) mice showed better clearance of Borrelia hermsii than wild-type B-1P cells. This study described a novel autoregulatory property of B-1P cells mediated by B-1P cell derived IL-10, which may affect the function of B-1P cells in infection and autoimmunity.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Borrelia/imunologia , Interleucina-10/metabolismo , Animais , Fator Ativador de Células B/farmacologia , Subpopulações de Linfócitos B/efeitos dos fármacos , Western Blotting , Borrelia/patogenicidade , Antígenos CD40/farmacologia , Proliferação de Células , Células Cultivadas , Interleucina-10/genética , Interleucina-10/farmacologia , Interleucina-5/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA