Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2313599121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739790

RESUMO

The ecoevolutionary drivers of species niche expansion or contraction are critical for biodiversity but challenging to infer. Niche expansion may be promoted by local adaptation or constrained by physiological performance trade-offs. For birds, evolutionary shifts in migratory behavior permit the broadening of the climatic niche by expansion into varied, seasonal environments. Broader niches can be short-lived if diversifying selection and geography promote speciation and niche subdivision across climatic gradients. To illuminate niche breadth dynamics, we can ask how "outlier" species defy constraints. Of the 363 hummingbird species, the giant hummingbird (Patagona gigas) has the broadest climatic niche by a large margin. To test the roles of migratory behavior, performance trade-offs, and genetic structure in maintaining its exceptional niche breadth, we studied its movements, respiratory traits, and population genomics. Satellite and light-level geolocator tracks revealed an >8,300-km loop migration over the Central Andean Plateau. This migration included a 3-wk, ~4,100-m ascent punctuated by upward bursts and pauses, resembling the acclimatization routines of human mountain climbers, and accompanied by surging blood-hemoglobin concentrations. Extreme migration was accompanied by deep genomic divergence from high-elevation resident populations, with decisive postzygotic barriers to gene flow. The two forms occur side-by-side but differ almost imperceptibly in size, plumage, and respiratory traits. The high-elevation resident taxon is the world's largest hummingbird, a previously undiscovered species that we describe and name here. The giant hummingbirds demonstrate evolutionary limits on niche breadth: when the ancestral niche expanded due to evolution (or loss) of an extreme migratory behavior, speciation followed.


Assuntos
Migração Animal , Aves , Especiação Genética , Animais , Migração Animal/fisiologia , Aves/genética , Aves/fisiologia , Aves/classificação , Ecossistema , Altitude , Evolução Biológica
2.
Trends Genet ; 33(5): 364-374, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28359582

RESUMO

Rates of meiotic recombination are widely variable both within and among species. However, the functional significance of this variation remains largely unknown. Is the observed within-species variation in recombination rate adaptive? Recent work has revealed new insight into the scale and scope of population-level variation in recombination rate. These data indicate that the magnitude of within-population variation in recombination is similar among taxa. The apparent similarity of the variance in recombination rate among individuals between distantly related species suggests that the relative costs and benefits of recombination that establish the upper and lower bounds may be similar across species. Here we review the current data on intraspecific variation in recombination rate and discuss the molecular and evolutionary costs and benefits of recombination frequency. We place this variation in the context of adaptation and highlight the need for more empirical studies focused on the adaptive value of variation in recombination rate.


Assuntos
Evolução Molecular , Meiose/genética , Recombinação Genética , Animais , Variação Genética , Humanos
3.
PLoS Genet ; 12(4): e1005951, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27035832

RESUMO

Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.


Assuntos
Drosophila melanogaster/genética , Recombinação Genética , Animais , Drosophila melanogaster/microbiologia , Feminino , Estudo de Associação Genômica Ampla , Masculino , Wolbachia/isolamento & purificação
4.
PLoS Genet ; 12(7): e1006120, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27414415

RESUMO

Dosage compensation is an essential process that equalizes transcript levels of X-linked genes between sexes by forming a domain of coordinated gene expression. Throughout the evolution of Diptera, many different X-chromosomes acquired the ability to be dosage compensated. Once each newly evolved X-chromosome is targeted for dosage compensation in XY males, its active genes are upregulated two-fold to equalize gene expression with XX females. In Drosophila melanogaster, the CLAMP zinc finger protein links the dosage compensation complex to the X-chromosome. However, the mechanism for X-chromosome identification has remained unknown. Here, we combine biochemical, genomic and evolutionary approaches to reveal that expansion of GA-dinucleotide repeats likely accumulated on the X-chromosome over evolutionary time to increase the density of CLAMP binding sites, thereby driving the evolution of dosage compensation. Overall, we present new insight into how subtle changes in genomic architecture, such as expansions of a simple sequence repeat, promote the evolution of coordinated gene expression.


Assuntos
Proteínas de Ligação a DNA/genética , Repetições de Dinucleotídeos , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cromossomo X/genética , Motivos de Aminoácidos , Animais , Sítios de Ligação , Evolução Biológica , DNA/química , Feminino , Dosagem de Genes , Genes Ligados ao Cromossomo X , Ligação Genética , Genoma de Inseto , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA
5.
Mol Biol Evol ; 39(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36468442
6.
BMC Evol Biol ; 15: 175, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26310872

RESUMO

BACKGROUND: Meiotic recombination rate has long been known to be phenotypically plastic. How plastic recombination evolves and is maintained remains controversial; though a leading model for the evolution of plastic recombination rests on the tenet that organismal fitness and recombination frequency are negatively correlated. Motivated by the mounting evidence that meiotic recombination frequencies increase in response to stress, here we test for a negative correlation between fitness and recombination frequency. Specifically, the fitness-associated recombination model (FAR) predicts that if stress increases meiotic recombination frequency, then increasing exposure to stressful conditions will yield an increasing magnitude of the recombinational response, while concomitantly decreasing fitness. RESULTS: We use heat shock as a stressor to test this prediction in Drosophila melanogaster. We find that increased exposure to heat shock conditions is associated with a non-linear increase in meiotic recombination frequency. We also find an independent effect of heat shock on organismal fitness, with fitness decreasing with increased duration of thermal stress. CONCLUSIONS: Our results thus support the foundation of the FAR model for the evolution of plastic recombination. Our data also suggest that modulating recombination frequency is one mechanism by which organisms can rapidly respond to environmental cues and confer increased adaptive potential to their offspring.


Assuntos
Drosophila melanogaster/fisiologia , Resposta ao Choque Térmico , Animais , Evolução Biológica , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Meiose , Recombinação Genética
7.
Mol Biol Evol ; 31(2): 425-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24214536

RESUMO

Gene conversion is the nonreciprocal exchange of genetic material between homologous chromosomes. Multiple lines of evidence from a variety of taxa strongly suggest that gene conversion events are biased toward GC-bearing alleles. However, in Drosophila, the data have largely been indirect and unclear, with some studies supporting the predictions of a GC-biased gene conversion model and other data showing contradictory findings. Here, we test whether gene conversion events are GC-biased in Drosophila melanogaster using whole-genome polymorphism and divergence data. Our results provide no support for GC-biased gene conversion and thus suggest that this process is unlikely to significantly contribute to patterns of polymorphism and divergence in this system.


Assuntos
Citosina/metabolismo , Drosophila melanogaster/genética , Conversão Gênica , Guanina/metabolismo , Alelos , Animais , Cromossomos de Insetos , Evolução Molecular , Genoma de Inseto , Genômica , Taxa de Mutação , Filogenia , Polimorfismo Genético
8.
Mol Biol Evol ; 31(10): 2612-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24974375

RESUMO

Y chromosomes, with their reduced effective population size, lack of recombination, and male-limited transmission, present a unique collection of constraints for the operation of natural selection. Male-limited transmission may greatly increase the efficacy of selection for male-beneficial mutations, but the reduced effective size also inflates the role of random genetic drift. Together, these defining features of the Y chromosome are expected to influence rates and patterns of molecular evolution on the Y as compared with X-linked or autosomal loci. Here, we use sequence data from 11 genes in 9 Drosophila species to gain insight into the efficacy of natural selection on the Drosophila Y relative to the rest of the genome. Drosophila is an ideal system for assessing the consequences of Y-linkage for molecular evolution in part because the gene content of Drosophila Y chromosomes is highly dynamic, with orthologous genes being Y-linked in some species whereas autosomal in others. Our results confirm the expectation that the efficacy of natural selection at weakly selected sites is reduced on the Y chromosome. In contrast, purifying selection on the Y chromosome for strongly deleterious mutations does not appear to be compromised. Finally, we find evidence of recurrent positive selection for 4 of the 11 genes studied here. Our results thus highlight the variable nature of the mode and impact of natural selection on the Drosophila Y chromosome.


Assuntos
Drosophila/classificação , Drosophila/genética , Seleção Genética , Cromossomo Y/genética , Animais , Evolução Molecular , Feminino , Masculino , Modelos Genéticos , Taxa de Mutação , Filogenia , Deleção de Sequência
9.
Mol Biol Evol ; 31(12): 3148-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25158796

RESUMO

Native to Asia, the soft-skinned fruit pest Drosophila suzukii has recently invaded the United States and Europe. The eastern United States represents the most recent expansion of their range, and presents an opportunity to test alternative models of colonization history. Here, we investigate the genetic population structure of this invasive fruit fly, with a focus on the eastern United States. We sequenced six X-linked gene fragments from 246 individuals collected from a total of 12 populations. We examine patterns of genetic diversity within and between populations and explore alternative colonization scenarios using approximate Bayesian computation. Our results indicate high levels of nucleotide diversity in this species and suggest that the recent invasions of Europe and the continental United States are independent demographic events. More broadly speaking, our results highlight the importance of integrating population structure into demographic models, particularly when attempting to reconstruct invasion histories. Finally, our simulation results illustrate the general challenge in reconstructing invasion histories using genetic data and suggest that genome-level data are often required to distinguish among alternative demographic scenarios.


Assuntos
Drosophila/genética , Animais , Teorema de Bayes , Genes de Insetos , Variação Genética , Haplótipos , Espécies Introduzidas , Masculino , Repetições de Microssatélites , Modelos Genéticos , Espanha , Estados Unidos
11.
Mol Biol Evol ; 29(8): 1933-42, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22319138

RESUMO

Molecular evolutionary theory predicts that the ratio of autosomal to X-linked adaptive substitution (K(A)/K(x)) is primarily determined by the average dominance coefficient of beneficial mutations. Although this theory has profoundly influenced analysis and interpretation of comparative genomic data, its predictions are based upon two unverified assumptions about the genetic basis of adaptation. The theory assumes that 1) the rate of adaptively driven molecular evolution is limited by the availability of beneficial mutations, and 2) the scaling of evolutionary parameters between the X and the autosomes (e.g., the beneficial mutation rate, and the fitness effect distribution of beneficial alleles, per X-linked versus autosomal locus) is constant across molecular evolutionary timescales. Here, we show that the genetic architecture underlying bouts of adaptive substitution can influence both assumptions, and consequently, the theoretical relationship between K(A)/K(x) and mean dominance. Quantitative predictions of prior theory apply when 1) many genomically dispersed genes potentially contribute beneficial substitutions during individual steps of adaptive walks, and 2) the population beneficial mutation rate, summed across the set of potentially contributing genes, is sufficiently small to ensure that adaptive substitutions are drawn from new mutations rather than standing genetic variation. Current research into the genetic basis of adaptation suggests that both assumptions are plausibly violated. We find that the qualitative positive relationship between mean dominance and K(A)/K(x) is relatively robust to the specific conditions underlying adaptive substitution, yet the quantitative relationship between dominance and K(A)/K(x) is quite flexible and context dependent. This flexibility may partially account for the puzzlingly variable X versus autosome substitution patterns reported in the empirical evolutionary genomics literature. The new theory unites the previously separate analysis of adaptation using new mutations versus standing genetic variation and makes several useful predictions about the interaction between genetic architecture, evolutionary genetic constraints, and effective population size in determining the ratio of adaptive substitution between autosomal and X-linked genes.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Mutação/genética , Cromossomo X/genética , Animais , Cromossomos Humanos X/genética , Genes/genética , Humanos , Modelos Genéticos , Filogenia , Densidade Demográfica
12.
Nature ; 450(7167): 203-18, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17994087

RESUMO

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.


Assuntos
Drosophila/classificação , Drosophila/genética , Evolução Molecular , Genes de Insetos/genética , Genoma de Inseto/genética , Genômica , Filogenia , Animais , Códon/genética , Elementos de DNA Transponíveis/genética , Drosophila/imunologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Ordem dos Genes/genética , Genoma Mitocondrial/genética , Imunidade/genética , Família Multigênica/genética , RNA não Traduzido/genética , Reprodução/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Sintenia/genética
13.
G3 (Bethesda) ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36857313

RESUMO

Wolbachia is a maternally transmitted endosymbiotic bacteria that infects a wide variety of arthropod and nematode hosts. The effects of Wolbachia on host biology are far-reaching and include changes in host gene expression. However, previous work on the host transcriptional response has generally been investigated in the context of a single host genotype. Thus, the relative effect of Wolbachia infection versus vs. host genotype on gene expression is unknown. Here, we explicitly test the relative roles of Wolbachia infection and host genotype on host gene expression by comparing the ovarian transcriptomes of 4 strains of Drosophila melanogaster (D. melanogaster) infected and uninfected with Wolbachia. Our data suggest that infection explains a small amount of transcriptional variation, particularly in comparison to variation in gene expression among strains. However, infection specifically affects genes related to cell cycle, translation, and metabolism. We also find enrichment of cell division and recombination processes among genes with infection-associated differential expression. Broadly, the transcriptomic changes identified in this study provide novel understanding of the relative magnitude of the effect of Wolbachia infection on gene expression in the context of host genetic variation and also point to genes that are consistently differentially expressed in response to infection among multiple genotypes.


Assuntos
Drosophila melanogaster , Wolbachia , Animais , Drosophila melanogaster/genética , Wolbachia/genética , Genótipo , Perfilação da Expressão Gênica , Transcriptoma , Simbiose
14.
G3 (Bethesda) ; 12(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35961026

RESUMO

Meiotic recombination plays a critical evolutionary role in maintaining fitness in response to selective pressures due to changing environments. Variation in recombination rate has been observed amongst and between species and populations and within genomes across numerous taxa. Studies have demonstrated a link between changes in recombination rate and selection, but the extent to which fine-scale recombination rate varies between evolved populations during the evolutionary period in response to selection is under active research. Here, we utilize a set of 3 temperature-evolved Drosophila melanogaster populations that were shown to have diverged in several phenotypes, including recombination rate, based on the temperature regime in which they evolved. Using whole-genome sequencing data from these populations, we generated linkage disequilibrium-based fine-scale recombination maps for each population. With these maps, we compare recombination rates and patterns among the 3 populations and show that they have diverged at fine scales but are conserved at broader scales. We further demonstrate a correlation between recombination rates and genomic variation in the 3 populations. Lastly, we show variation in localized regions of enhanced recombination rates, termed warm spots, between the populations with these warm spots and associated genes overlapping areas previously shown to have diverged in the 3 populations due to selection. These data support the existence of recombination modifiers in these populations which are subject to selection during evolutionary change.


Assuntos
Drosophila melanogaster , Recombinação Genética , Animais , Drosophila melanogaster/genética , Variação Genética , Desequilíbrio de Ligação , Seleção Genética , Temperatura
15.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791181

RESUMO

Plastic recombination in Drosophila melanogaster has been associated with a variety of extrinsic and intrinsic factors such as temperature, starvation, and parasite infection. The bacterial endosymbiont Wolbachia pipientis has also been associated with plastic recombination in D. melanogaster. Wolbachia infection is pervasive in arthropods and this infection induces a variety of phenotypes in its hosts, the strength of which can depend on bacterial titer. Here, we test the hypothesis that the magnitude of Wolbachia-associated plastic recombination in D. melanogaster depends on titer. To manipulate titer, we raised Wolbachia-infected and uninfected flies on diets that have previously been shown to increase or decrease Wolbachia titer relative to controls. We measured recombination in treated and control individuals using a standard backcrossing scheme with two X-linked visible markers. Our results recapitulate previous findings that Wolbachia infection is associated with increased recombination rate across the yellow-vermillion interval of the X chromosome. Our data show no significant effect of diet or diet by Wolbachia interactions on recombination, suggesting that diet-induced changes in Wolbachia titer have no effect on the magnitude of plastic recombination. These findings represent one of the first steps toward investigating Wolbachia-associated plastic recombination and demonstrate that the phenotype is a discrete response rather than a continuous one.


Assuntos
Wolbachia , Animais , Drosophila melanogaster/fisiologia , Fenótipo , Plásticos , Recombinação Genética , Simbiose , Wolbachia/genética
16.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791205

RESUMO

Meiotic recombination is a critical process for sexually reproducing organisms. This exchange of genetic information between homologous chromosomes during meiosis is important not only because it generates genetic diversity, but also because it is often required for proper chromosome segregation. Consequently, the frequency and distribution of crossovers are tightly controlled to ensure fertility and offspring viability. However, in many systems, it has been shown that environmental factors can alter the frequency of crossover events. Two studies in flies and yeast point to nutritional status affecting the frequency of crossing over. However, this question remains unexplored in mammals. Here, we test how crossover frequency varies in response to diet in Mus musculus males. We use immunohistochemistry to estimate crossover frequency in multiple genotypes under two diet treatments. Our results indicate that while crossover frequency was unaffected by diet in some strains, other strains were sensitive even to small composition changes between two common laboratory chows. Therefore, recombination is both resistant and sensitive to certain dietary changes in a strain-dependent manner and, hence, this response is genetically determined. Our study is the first to report a nutrition effect on genome-wide levels of recombination. Moreover, our work highlights the importance of controlling diet in recombination studies and may point to diet as a potential source of variability among studies, which is relevant for reproducibility.


Assuntos
Meiose
17.
Trends Genet ; 24(3): 114-23, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18249460

RESUMO

Several contributing factors have been implicated in evolutionary rate heterogeneity among proteins, but their evolutionary mechanisms remain poorly characterized. The recently sequenced 12 Drosophila genomes provide a unique opportunity to shed light on these unresolved issues. Here, we focus on the role of natural selection in shaping evolutionary rates. We use the Drosophila genomic data to distinguish between factors that increase the strength of purifying selection on proteins and factors that affect the amount of positive selection experienced by proteins. We confirm the importance of translational selection in shaping protein evolution in Drosophila and show that factors such as tissue bias in expression, gene essentiality, intron number, and recombination rate also contribute to evolutionary rate variation among proteins.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolução Molecular , Seleção Genética , Animais , Íntrons/genética
18.
Bioessays ; 31(9): 912-20, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19644920

RESUMO

High-throughput DNA analyses are increasingly being used to detect rare mutations in moderately sized genomes. These methods have yielded genome mutation rates that are markedly higher than those obtained using pre-genomic strategies. Recent work in a variety of organisms has shown that mutation rate is strongly affected by sequence context and genome position. These observations suggest that high-throughput DNA analyses will ultimately allow researchers to identify trans-acting factors and cis sequences that underlie mutation rate variation. Such work should provide insights on how mutation rate variability can impact genome organization and disease progression.


Assuntos
Genoma , Mutação , Análise de Sequência de DNA/métodos , Animais , Progressão da Doença , Evolução Molecular , Humanos
19.
Genome Biol Evol ; 13(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33247719

RESUMO

Meiotic recombination is a critical process that ensures proper segregation of chromosome homologs through DNA double-strand break repair mechanisms. Rates of recombination are highly variable among various taxa, within species, and within genomes with far-reaching evolutionary and genomic consequences. The genetic basis of recombination rate variation is therefore crucial in the study of evolutionary biology but remains poorly understood. In this study, we took advantage of a set of experimental temperature-evolved populations of Drosophila melanogaster with heritable differences in recombination rates depending on the temperature regime in which they evolved. We performed whole-genome sequencing and identified several chromosomal regions that appear to be divergent depending on temperature regime. In addition, we identify a set of single-nucleotide polymorphisms and associated genes with significant differences in allele frequency when the different temperature populations are compared. Further refinement of these gene candidates emphasizing those expressed in the ovary and associated with DNA binding reveals numerous potential candidate genes such as Hr38, EcR, and mamo responsible for observed differences in recombination rates in these experimental evolution lines thus providing insight into the genetic basis of recombination rate variation.


Assuntos
Drosophila melanogaster/genética , Evolução Molecular , Variação Genética , Genômica , Recombinação Homóloga , Temperatura , Animais , Cromossomos , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Feminino , Genoma , Masculino , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/genética , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma
20.
Mol Biol Evol ; 26(7): 1591-605, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19351792

RESUMO

Rates of single nucleotide substitution in Drosophila are highly variable within the genome, and several examples illustrate that evolutionary rates differ among Drosophila species as well. Here, we use a maximum likelihood method to quantify lineage-specific substitutional patterns and apply this method to 4-fold degenerate synonymous sites and introns from more than 8,000 genes aligned in the Drosophila melanogaster group. We find that within species, different classes of sequence evolve at different rates, with long introns evolving most slowly and short introns evolving most rapidly. Relative rates of individual single nucleotide substitutions vary approximately 3-fold among lineages, yielding patterns of substitution that are comparatively less GC-biased in the melanogaster species complex relative to Drosophila yakuba and Drosophila erecta. These results are consistent with a model coupling a mutational shift toward reduced GC content, or a shift in mutation-selection balance, in the D. melanogaster species complex, with variation in selective constraint among different classes of DNA sequence. Finally, base composition of coding and intronic sequences is not at equilibrium with respect to substitutional patterns, which primarily reflects the slow rate of the substitutional process. These results thus support the view that mutational and/or selective processes are labile on an evolutionary timescale and that if the process is indeed selection driven, then the distribution of selective constraint is variable across the genome.


Assuntos
Drosophila/genética , Mutação , Animais , Composição de Bases , Drosophila/classificação , Evolução Molecular , Genoma de Inseto , Íntrons , Funções Verossimilhança , Filogenia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA