Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Contemp Dent Pract ; 22(3): 237-241, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210921

RESUMO

AIM AND OBJECTIVE: The present study aimed at evaluating the effectiveness of diverse remineralizing agents on artificial enamel lesion using confocal laser scanning microscope (CLSM). MATERIALS AND METHODS: Totally 80 mandibular premolars which were single rooted were included. All teeth were suspended in a demineralizing solution to create artificial enamel lesions on the exposed enamel. The samples were separated randomly into four groups (20 each) depending on the application of the remineralizing agents as follows: group 1: control; group 2: calcium sucrose phosphate (CaSP); group 3: fluoride varnish; and group 4: casein phosphopeptides-amorphous calcium phosphate (CPP-ACP). The samples in individual group were treated with the corresponding remineralizing agent (except for the control group) two times a day for 14 days. The experimental and control groups were exposed to CLSM assessment to analyze the data of remineralization and demineralization. RESULTS: The mean depth of remineralization of fluoride varnish group was slightly more compared to other groups. The highest mean depth of remineralization was found in the fluoride varnish group (122.26 ± 0.28) followed by CaSP (110.58 ± 1.34), CPP-ACP (107.08 ± 0.48), and control (157.78 ± 0.46) groups. The different comparisons among the remineralization material groups showed a statistically significant difference (p < 0.05) in almost all groups except group 2 vs group 4. CONCLUSION: This study concluded that improved remineralization of artificial enamel lesion could be achieved with the fluoride varnish group when compared to the CaSP and CPP-ACP groups. CLINICAL SIGNIFICANCE: Remineralization as a treatment technique has received a lot of consideration from clinicians. The process of remineralization and demineralization is considered an active process categorized by the movement of calcium and phosphate in and out of the enamel. Presently, the attention has changed toward increasing the resistance of the tooth by applying remineralizing agents topically, which has led to the notable fall in dental caries.


Assuntos
Cárie Dentária , Remineralização Dentária , Cariostáticos/farmacologia , Caseínas , Cárie Dentária/tratamento farmacológico , Esmalte Dentário , Fluoretos/farmacologia , Humanos , Lasers
2.
J Contemp Dent Pract ; 20(2): 152-157, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31058628

RESUMO

AIM: Aim of the present study was to evaluate the apical leakage in gutta-percha/AH plus and resilon/epiphany filled root canals using two dye penetration techniques. MATERIALS AND METHODS: Sixty freshly extracted human single-rooted teeth were collected. The crown portion of each tooth was sectioned from the cementoenamel junction using a diamond disk. The canals were instrumented using Step back technique up to a caliber of 40. The roots were randomly divided into four experimental groups of 15 sample units each. All the groups are obturated using lateral compaction technique. Samples were placed in India ink and stored in an incubator for 7 days after which they were thoroughly washed under tap water and dried. The roots were divided into longitudinal splitting technique with diamond disks and using clearing technique was checked for linear dye penetration using stereomicroscope. The surfaces were scanned and surfaces with greatest dye penetration were measured by using De winter Biowizard software system. RESULTS: The mean leakage for groups I, II, III, and IV are 2.31980, 2.68140, 4.11567, and 4.21047 respectively. One-way ANOVA was applied to the mean leakage scores of different groups, found a significant difference between mean leakage scores. F value of 3.266 and it was found to be significant with a p value of 0.028. Significant differences were obtained for mean comparisons of groups I and III, groups I and IV and groups III and IV. Further, between groups I and II, groups II and III, and groups III and IV no significant differences were observed. CONCLUSION: In conclusion, gutta-percha/AH Plus sealed root canals showed lesser leakage than the Resilon Epiphany groups and there was no significant difference in the two different methodologies used for dye penetration. CLINICAL SIGNIFICANCE: Tightly adapted endodontic filling material is one of the goals in successful clinical endodontics and Improvements in the adhesive technology have fostered attempts to reduce apical and coronal leakage by bonding to the root canal walls to obtain a solid monoblock.


Assuntos
Infiltração Dentária , Materiais Restauradores do Canal Radicular , Cavidade Pulpar , Resinas Epóxi , Guta-Percha , Humanos , Obturação do Canal Radicular
3.
BMC Microbiol ; 18(1): 175, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30466389

RESUMO

BACKGROUND: The antimicrobial resistance (AMR) phenotypic properties, multiple drug resistance (MDR) gene profiles, and genes related to potential virulence and pathogenic properties of five Enterobacter bugandensis strains isolated from the International Space Station (ISS) were carried out and compared with genomes of three clinical strains. Whole genome sequences of ISS strains were characterized using the hybrid de novo assembly of Nanopore and Illumina reads. In addition to traditional microbial taxonomic approaches, multilocus sequence typing (MLST) analysis was performed to classify the phylogenetic lineage. Agar diffusion discs assay was performed to test antibiotics susceptibility. The draft genomes after assembly and scaffolding were annotated with the Rapid Annotations using Subsystems Technology and RNAmmer servers for downstream analysis. RESULTS: Molecular phylogeny and whole genome analysis of the ISS strains with all publicly available Enterobacter genomes revealed that ISS strains were E. bugandensis and similar to the type strain EB-247T and two clinical isolates (153_ECLO and MBRL 1077). Comparative genomic analyses of all eight E. bungandensis strains showed, a total of 4733 genes were associated with carbohydrate metabolism (635 genes), amino acid and derivatives (496 genes), protein metabolism (291 genes), cofactors, vitamins, prosthetic groups, pigments (275 genes), membrane transport (247 genes), and RNA metabolism (239 genes). In addition, 112 genes identified in the ISS strains were involved in virulence, disease, and defense. Genes associated with resistance to antibiotics and toxic compounds, including the MDR tripartite system were also identified in the ISS strains. A multiple antibiotic resistance (MAR) locus or MAR operon encoding MarA, MarB, MarC, and MarR, which regulate more than 60 genes, including upregulation of drug efflux systems that have been reported in Escherichia coli K12, was also observed in the ISS strains. CONCLUSION: Given the MDR results for these ISS Enterobacter genomes and increased chance of pathogenicity (PathogenFinder algorithm with > 79% probability), these species pose important health considerations for future missions. Thorough genomic characterization of the strains isolated from ISS can help to understand the pathogenic potential, and inform future missions, but analyzing them in in-vivo systems is required to discern the influence of microgravity on their pathogenicity.


Assuntos
Farmacorresistência Bacteriana Múltipla , Enterobacter/efeitos dos fármacos , Enterobacter/genética , Infecções por Enterobacteriaceae/microbiologia , Astronave , Antibacterianos/farmacologia , Enterobacter/classificação , Enterobacter/isolamento & purificação , Genoma Bacteriano , Genômica , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Astronave/estatística & dados numéricos , Sequenciamento Completo do Genoma
4.
Appl Microbiol Biotechnol ; 102(4): 1869-1887, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29305694

RESUMO

We have characterized a broad collection of extremophilic bacterial isolates from a deep subsurface mine, compost dumping sites, and several hot spring ecosystems. Spore-forming strains isolated from these environments comprised both obligate thermophiles/thermotolerant species (growing at > 55 °C; 240 strains) and mesophiles (growing at 15 to 40 °C; 12 strains). An overwhelming abundance of Geobacillus (81.3%) and Bacillus (18.3%) species was observed among the tested isolates. 16S rRNA sequence analysis documented the presence of 24 species among these isolates, but the 16S rRNA gene was shown to possess insufficient resolution to reliably discern Geobacillus phylogeny. gyrB-based phylogenetic analyses of nine strains revealed the presence of six known Geobacillus and one novel species. Multilocus sequence typing analyses based on seven different housekeeping genes deduced from whole genome sequencing of nine strains revealed the presence of three novel Geobacillus species. The vegetative cells of 41 Geobacillus strains were exposed to UVC254, and most (34 strains) survived 120 J/m2, while seven strains survived 300 J/m2, and cells of only one Geobacillus strain isolated from a compost facility survived 600 J/m2. Additionally, the UVC254 inactivation kinetics of spores from four Geobacillus strains isolated from three distinct geographical regions were evaluated and compared to that of a spacecraft assembly facility (SAF) clean room Geobacillus strain. The purified spores of the thermophilic SAF strain exhibited resistance to 2000 J/m2, whereas spores of two environmental Geobacillus strains showed resistance to 1000 J/m2. This study is the first to investigate UV resistance of environmental, obligately thermophilic Geobacillus strains, and also lays the foundation for advanced understanding of necessary sterilization protocols practiced in food, medical, pharmaceutical, and aerospace industries.


Assuntos
Ambientes Extremos , Geobacillus/isolamento & purificação , Viabilidade Microbiana/efeitos da radiação , Microbiologia do Solo , Raios Ultravioleta , Microbiologia da Água , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Análise por Conglomerados , DNA Girase/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Geobacillus/classificação , Geobacillus/genética , Geobacillus/efeitos da radiação , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
5.
BMC Genomics ; 18(Suppl 3): 233, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28361685

RESUMO

BACKGROUND: Metastasis via pelvic and/or para-aortic lymph nodes is a major risk factor for endometrial cancer. Lymph-node resection ameliorates risk but is associated with significant co-morbidities. Incidence in patients with stage I disease is 4-22% but no mechanism exists to accurately predict it. Therefore, national guidelines for primary staging surgery include pelvic and para-aortic lymph node dissection for all patients whose tumor exceeds 2cm in diameter. We sought to identify a robust molecular signature that can accurately classify risk of lymph node metastasis in endometrial cancer patients. 86 tumors matched for age and race, and evenly distributed between lymph node-positive and lymph node-negative cases, were selected as a training cohort. Genomic micro-RNA expression was profiled for each sample to serve as the predictive feature matrix. An independent set of 28 tumor samples was collected and similarly characterized to serve as a test cohort. RESULTS: A feature selection algorithm was designed for applications where the number of samples is far smaller than the number of measured features per sample. A predictive miRNA expression signature was developed using this algorithm, which was then used to predict the metastatic status of the independent test cohort. A weighted classifier, using 18 micro-RNAs, achieved 100% accuracy on the training cohort. When applied to the testing cohort, the classifier correctly predicted 90% of node-positive cases, and 80% of node-negative cases (FDR = 6.25%). CONCLUSION: Results indicate that the evaluation of the quantitative sparse-feature classifier proposed here in clinical trials may lead to significant improvement in the prediction of lymphatic metastases in endometrial cancer patients.


Assuntos
Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Genômica/métodos , Algoritmos , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , MicroRNAs/genética , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico
6.
Int J Syst Evol Microbiol ; 67(5): 1228-1234, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28086074

RESUMO

A facultatively anaerobic, Gram-stain-negative, rod-shaped, nitrogen-fixing, endophytic bacterial strain designated MP23T was isolated from the roots of Phragmites karka growing in Chilika Lagoon, Odisha, India. Strain MP23T was slightly halophilic, and the optimal NaCl concentration and temperature for growth were 1 % and 30 °C, respectively. On the basis of 16S rRNA gene sequence similarities, strain MP23T was affiliated to the family Enterobacteriaceae and most closely related to Mangrovibacter yixingensis KCTC 42181T and Mangrovibacter plantisponsor DSM 19579T with 99.71 % similarity, followed by Salmonella enterica subsp. salamae DSM 9220T (97.22 %), Cronobacter condimenti LMG 26250T (97.14 %) and Salmonella enterica subsp. diarizonae DSM 14847T (97 %). Sequence analysis of 16S rRNA, hsp60, gyrB and rpoB genes showed that strain MP23T formed a phylogenetic cluster with M. yixingensis KCTC 42181T and M. plantisponsor DSM 19579T indicating that it belongs to the genus Mangrovibacter. The major cellular fatty acids were C16 : 0, C18 : 1ω6c and/or C18 : 1ω7c, C16 : 1ω6c and/or C16 : 1ω7c, C14 : 0, C14 : 0 3-OH and/or iso-C16 : 1 I and C17 : 0 cyclo. Polar lipids of strain MP23T consisted of phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 50.3 mol%. Based on experimental DNA-DNA hybridization values and average nucleotide identity derived from in silico comparison of whole-genome sequences, strain MP23T could be distinguished from its closest neighbours. We therefore conclude that strain MP23T represents a novel species of the genus Mangrovibacter for which the name Mangrovibacter phragmitis sp. nov. is proposed. The type strain is MP23T (=DSM 100250T=KCTC 42580T).


Assuntos
Enterobacteriaceae/classificação , Filogenia , Raízes de Plantas/microbiologia , Poaceae/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Ácidos Graxos/química , Índia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
J Environ Qual ; 45(4): 1286-95, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27380077

RESUMO

In the past decade, significant increases in surface water dissolved organic carbon (DOC) have been reported for large aquatic ecosystems of the Northern Hemisphere and have been attributed variously to global warming, altered hydrologic conditions, and atmospheric deposition, among other factors. We analyzed a 25-yr DOC record (1988-2012) available for a forested headwater stream in the United States and documented two distinct regimes of stream DOC trends. From 1988 to 2001, annual mean volume-weighted DOC concentration (DOC, mg L) and annual DOC flux (kg ha yr) declined by 34 and 56%, respectively. During 1997 to 2012, the decline in DOC and DOC flux increased by 141 and 165%, respectively. Declining DOC from 1988 to 2001 corresponded to a decline in growing season runoff, which has the potential to influence mobilization of DOC from uplands to streams. Increasing DOC from 1997 to 2012 corresponded to increased precipitation early in the growing season and to an increase in the number and intensity of short-duration fall storms capable of mobilizing long-accrued DOC from forest litter and soils. In contrast, total annual runoff declined throughout the period. Rising air temperature, atmospheric acid deposition, and nitrogen depositions did not offer any plausible explanation for the observed bidirectional annual trends of stream DOC. Our study highlights the critical role of long-term datasets and analyses for understanding the impacts of climate change on carbon and water cycles and associated functions of aquatic and terrestrial ecosystems.


Assuntos
Carbono/análise , Agricultura Florestal , Florestas , Rios , Solo , Sudeste dos Estados Unidos
8.
Microbiol Resour Announc ; 13(6): e0126523, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38742883

RESUMO

The genome of Paenibacillus phoenicis, a spore-forming bacterium isolated from the spacecraft assembly facility of the Phoenix mission, was generated via hybrid assembly by merging short and long reads. Examining this genome may shed light on strategies to minimize the risk of contaminating extraterrestrial environments with Earth-based microorganisms.

9.
Sci Rep ; 14(1): 12249, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806503

RESUMO

Members of the family Trichomeriaceae, belonging to the Chaetothyriales order and the Ascomycota phylum, are known for their capability to inhabit hostile environments characterized by extreme temperatures, oligotrophic conditions, drought, or presence of toxic compounds. The genus Knufia encompasses many polyextremophilic species. In this report, the genomic and morphological features of the strain FJI-L2-BK-P2 presented, which was isolated from the Mars 2020 mission spacecraft assembly facility located at the Jet Propulsion Laboratory in Pasadena, California. The identification is based on sequence alignment for marker genes, multi-locus sequence analysis, and whole genome sequence phylogeny. The morphological features were studied using a diverse range of microscopic techniques (bright field, phase contrast, differential interference contrast and scanning electron microscopy). The phylogenetic marker genes of the strain FJI-L2-BK-P2 exhibited highest similarities with type strain of Knufia obscura (CBS 148926T) that was isolated from the gas tank of a car in Italy. To validate the species identity, whole genomes of both strains (FJI-L2-BK-P2 and CBS 148926T) were sequenced, annotated, and strain FJI-L2-BK-P2 was confirmed as K. obscura. The morphological analysis and description of the genomic characteristics of K. obscura FJI-L2-BK-P2 may contribute to refining the taxonomy of Knufia species. Key morphological features are reported in this K. obscura strain, resembling microsclerotia and chlamydospore-like propagules. These features known to be characteristic features in black fungi which could potentially facilitate their adaptation to harsh environments.


Assuntos
Ascomicetos , Marte , Filogenia , Astronave , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Genoma Fúngico/genética , Genômica/métodos
10.
mBio ; 15(4): e0018124, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38477597

RESUMO

A comprehensive microbial surveillance was conducted at NASA's Mars 2020 spacecraft assembly facility (SAF), where whole-genome sequencing (WGS) of 110 bacterial strains was performed. One isolate, designated 179-BFC-A-HST, exhibited less than 80% average nucleotide identity (ANI) to known species, suggesting a novel organism. This strain demonstrated high-level resistance [minimum inhibitory concentration (MIC) >256 mg/L] to third-generation cephalosporins, including ceftazidime, cefpodoxime, combination ceftazidime/avibactam, and the fourth-generation cephalosporin cefepime. The results of a comparative genomic analysis revealed that 179-BFC-A-HST is most closely related to Virgibacillus halophilus 5B73CT, sharing an ANI of 78.7% and a digital DNA-DNA hybridization (dDDH) value of 23.5%, while their 16S rRNA gene sequences shared 97.7% nucleotide identity. Based on these results and the recent recognition that the genus Virgibacillus is polyphyletic, strain 179-BFC-A-HST is proposed as a novel species of a novel genus, Tigheibacillus jepli gen. nov., sp. nov (type strain 179-BFC-A-HST = DSM 115946T = NRRL B-65666T), and its closest neighbor, V. halophilus, is proposed to be reassigned to this genus as Tigheibacillus halophilus comb. nov. (type strain 5B73CT = DSM 21623T = JCM 21758T = KCTC 13935T). It was also necessary to reclassify its second closest neighbor Virgibacillus soli, as a member of a novel genus Paracerasibacillus, reflecting its phylogenetic position relative to the genus Cerasibacillus, for which we propose Paracerasibacillus soli comb. nov. (type strain CC-YMP-6T = DSM 22952T = CCM 7714T). Within Amphibacillaceae (n = 64), P. soli exhibited 11 antibiotic resistance genes (ARG), while T. jepli encoded for 3, lacking any known ß-lactamases, suggesting resistance from variant penicillin-binding proteins, disrupting cephalosporin efficacy. P. soli was highly resistant to azithromycin (MIC >64 mg/L) yet susceptible to cephalosporins and penicillins. IMPORTANCE: The significance of this research extends to understanding microbial survival and adaptation in oligotrophic environments, such as those found in SAF. Whole-genome sequencing of several strains isolated from Mars 2020 mission assembly cleanroom facilities, including the discovery of the novel species Tigheibacillus jepli, highlights the resilience and antimicrobial resistance (AMR) in clinically relevant antibiotic classes of microbes in nutrient-scarce settings. The study also redefines the taxonomic classifications within the Amphibacillaceae family, aligning genetic identities with phylogenetic data. Investigating ARG and virulence factors (VF) across these strains illuminates the microbial capability for resistance under resource-limited conditions while emphasizing the role of human-associated VF in microbial survival, informing sterilization practices and microbial management in similar oligotrophic settings beyond spacecraft assembly cleanrooms such as pharmaceutical and medical industry cleanrooms.


Assuntos
Ceftazidima , Ácidos Graxos , Humanos , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Hibridização de Ácido Nucleico , Esporos/química , Nucleotídeos , DNA , DNA Bacteriano/genética , DNA Bacteriano/química , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
11.
Front Microbiol ; 15: 1355444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725686

RESUMO

The aerobic hyperthermophile "Fervidibacter sacchari" catabolizes diverse polysaccharides and is the only cultivated member of the class "Fervidibacteria" within the phylum Armatimonadota. It encodes 117 putative glycoside hydrolases (GHs), including two from GH family 50 (GH50). In this study, we expressed, purified, and functionally characterized one of these GH50 enzymes, Fsa16295Glu. We show that Fsa16295Glu is a ß-1,3-endoglucanase with optimal activity on carboxymethyl curdlan (CM-curdlan) and only weak agarase activity, despite most GH50 enzymes being described as ß-agarases. The purified enzyme has a wide temperature range of 4-95°C (optimal 80°C), making it the first characterized hyperthermophilic representative of GH50. The enzyme is also active at a broad pH range of at least 5.5-11 (optimal 6.5-10). Fsa16295Glu possesses a relatively high kcat/KM of 1.82 × 107 s-1 M-1 with CM-curdlan and degrades CM-curdlan nearly completely to sugar monomers, indicating preferential hydrolysis of glucans containing ß-1,3 linkages. Finally, a phylogenetic analysis of Fsa16295Glu and all other GH50 enzymes revealed that Fsa16295Glu is distant from other characterized enzymes but phylogenetically related to enzymes from thermophilic archaea that were likely acquired horizontally from "Fervidibacteria." Given its functional and phylogenetic novelty, we propose that Fsa16295Glu represents a new enzyme subfamily, GH50_3.

12.
Astrobiology ; 24(3): 230-274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507695

RESUMO

As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection "knowledge gaps" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.


Assuntos
Marte , Voo Espacial , Humanos , Meio Ambiente Extraterreno , Exobiologia , Contenção de Riscos Biológicos , Astronave
13.
J Phys Chem Lett ; 14(24): 5718-5726, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37318228

RESUMO

The photoexcitation of weakly bound complexes can lead to several decay pathways, depending on the nature of the potential energy surfaces. Upon excitation of a chromophore in a weakly bound complex, ionization of its neighbor upon energy transfer can occur due to a unique relaxation process known as intermolecular Coulombic decay (ICD), a phenomenon of renewed focus owing to its relevance in biological systems. Herein, we report the evidence for outer-valence ICD induced by multiphoton excitation by near-ultraviolet radiation of 4.4 eV photons, hitherto unknown in molecular systems. In the binary complexes of 2,6-difluorophenylacetylene with aliphatic amines, a resonant two-photon excitation localized on the 2,6-difluorophenylacetylene chromophore results in the formation of an amine cation following an outer-valence ICD process. The unique trends in experimentally observed translational energy distribution profiles of the amine cations following hydrogen bond dissociation, analyzed with the help of electronic structure and ab initio molecular dynamics calculations, revealed the presence of a delicate interplay of roaming dynamics, methyl-rotor dynamics, and binding energy.

14.
Front Microbiol ; 14: 1166013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396358

RESUMO

A single strain from the family Paenibacillaceae was isolated from the wall behind the Waste Hygiene Compartment aboard the International Space Station (ISS) in April 2018, as part of the Microbial Tracking mission series. This strain was identified as a gram-positive, rod-shaped, oxidase-positive, catalase-negative motile bacterium in the genus Cohnella, designated as F6_2S_P_1T. The 16S sequence of the F6_2S_P_1T strain places it in a clade with C. rhizosphaerae and C. ginsengisoli, which were originally isolated from plant tissue or rhizosphere environments. The closest 16S and gyrB matches to strain F6_2S_P_1T are to C. rhizosphaerae with 98.84 and 93.99% sequence similarity, while a core single-copy gene phylogeny from all publicly available Cohnella genomes places it as more closely related to C. ginsengisoli. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values to any described Cohnella species are <89 and <22%, respectively. The major fatty acids for strain F6_2S_P_1T are anteiso-C15:0 (51.7%), iso-C16:0 (23.1%), and iso-C15:0 (10.5%), and it is able to metabolize a wide range of carbon compounds. Given the results of the ANI and dDDH analyses, this ISS strain is a novel species within the genus Cohnella for which we propose the name Cohnella hashimotonis, with the type strain F6_2S_P_1T (=NRRL B-65657T and DSMZ 115098T). Because no closely related Cohnella genomes were available, this study generated the whole-genome sequences (WGSs) of the type strains for C. rhizosphaerae and C. ginsengisoli. Phylogenetic and pangenomic analysis reveals that F6_2S_P_1T, C. rhizosphaerae, and C. ginsengisoli, along with two uncharacterized Cohnella strains, possess a shared set of 332 gene clusters which are not shared with any other WGS of Cohnella species, and form a distinct clade branching off from C. nanjingensis. Functional traits were predicted for the genomes of strain F6_2S_P_1T and other members of this clade.

15.
Microbiome ; 11(1): 125, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264385

RESUMO

BACKGROUND: Several investigations on the microbial diversity and functional properties of the International Space Station (ISS) environment were carried out to understand the influence of spaceflight conditions on the microbial population. However, metagenome-assembled genomes (MAGs) of ISS samples are yet to be generated and subjected to various genomic analyses, including phylogenetic affiliation, predicted functional pathways, antimicrobial resistance, and virulence characteristics. RESULTS: In total, 46 MAGs were assembled from 21 ISS environmental metagenomes, in which metaSPAdes yielded 20 MAGs and metaWRAP generated 26 MAGs. Among 46 MAGs retrieved, 18 bacterial species were identified, including one novel genus/species combination (Kalamiella piersonii) and one novel bacterial species (Methylobacterium ajmalii). In addition, four bins exhibited fungal genomes; this is the first-time fungal genomes were assembled from ISS metagenomes. Phylogenetic analyses of five bacterial species showed ISS-specific evolution. The genes pertaining to cell membranes, such as transmembrane transport, cell wall organization, and regulation of cell shape, were enriched. Variations in the antimicrobial-resistant (AMR) and virulence genes of the selected 20 MAGs were characterized to predict the ecology and evolution of biosafety level (BSL) 2 microorganisms in space. Since microbial virulence increases in microgravity, AMR gene sequences of MAGs were compared with genomes of respective ISS isolates and corresponding type strains. Among these 20 MAGs characterized, AMR genes were more prevalent in the Enterobacter bugandensis MAG, which has been predominantly isolated from clinical samples. MAGs were further used to analyze if genes involved in AMR and biofilm formation of viable microbes in ISS have variation due to generational evolution in microgravity and radiation pressure. CONCLUSIONS: Comparative analyses of MAGs and whole-genome sequences of related ISS isolates and their type strains were characterized to understand the variation related to the microbial evolution under microgravity. The Pantoea/Kalamiella strains have the maximum single-nucleotide polymorphisms found within the ISS strains examined. This may suggest that Pantoea/Kalamiella strains are much more subjective to microgravity changes. The reconstructed genomes will enable researchers to study the evolution of genomes under microgravity and low-dose irradiation compared to the evolution of microbes here on Earth. Video Abstract.


Assuntos
Anti-Infecciosos , Gammaproteobacteria , Voo Espacial , Metagenoma , Filogenia , Bactérias , Gammaproteobacteria/genética , Metagenômica
16.
J Biomol Tech ; 34(3)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37969875

RESUMO

The rapid assessment of microbiomes from ultra-low biomass environments such as cleanrooms or hospital operating rooms has a number of applications for human health and spacecraft manufacturing. Current techniques often employ lengthy protocols using short-read DNA sequencing technology to analyze amplified DNA and have the disadvantage of a longer analysis time and lack of portability. Here, we demonstrate a rapid (~24 hours) on-site nanopore-based sequencing approach to characterize the microbiome of a NASA Class 100K cleanroom where spacecraft components are assembled. This approach employs a modified protocol of Oxford Nanopore's Rapid PCR Barcoding Kit in combination with the recently developed Squeegee-Aspirator for Large Sampling Area (SALSA) surface sampling device. Results for these ultra-low biomass samples revealed DNA amplification ~1 to 2 orders of magnitude above process control samples and were dominated primarily by Paracoccus and Acinetobacter species. Negative control samples were collected to provide critical data on background contamination, including Cutibacerium acnes, which most likely originated from the sampling reagents-associated microbiome (kitome). Overall, these results provide data on a novel approach for rapid low-biomass DNA profiling using the SALSA sampler combined with modified nanopore sequencing. These data highlight the critical need for employing multiple negative controls, along with using DNA-free reagents and techniques, to enable a proper assessment of ultra-low biomass samples.


Assuntos
Microbiota , Sequenciamento por Nanoporos , Humanos , Biomassa , Microbiota/genética , Análise de Sequência de DNA/métodos , DNA , Indicadores e Reagentes , Sequenciamento de Nucleotídeos em Larga Escala/métodos
17.
Res Sq ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461605

RESUMO

Background: With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habits, and how microbes survive, proliferate and spread in space conditions, is coming more and more important. The Microbial Tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the International Space Station (ISS). Results: The analysis of their 16S rRNA gene sequences revealed <99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing (WGS) was undertaken. For all strains, the gyrB gene exhibited <93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average ucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values, when compared to any known bacterial species, were less than <94% and 50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including ß-lactone and type III polyketide synthase (T3PKS) clusters. Conclusions: Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (=NRRL B-65660T), Leifsonia virtsii, F6_8S_P_1AT (=NRRL B-65661T), Leifsonia williamsii, F6_8S_P_1BT (=NRRL B- 65662T and DSMZ 115932T), Paenibacillus vandeheii, F6_3S_P_1CT(=NRRL B-65663T and DSMZ 115940T), and Sporosarcina highlanderae F6_3S_P_2 T(=NRRL B-65664T and DSMZ 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.

18.
IMA Fungus ; 14(1): 15, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568226

RESUMO

During the construction and assembly of the Mars 2020 mission components at two different NASA cleanrooms, several fungal strains were isolated. Based on their colony morphology, two strains that showed yeast-like appearance were further characterized for their phylogenetic position. The species-level classification of these two novel strains, using traditional colony and cell morphology methods combined with the phylogenetic reconstructions using multi-locus sequence analysis (MLSA) based on several gene loci (ITS, LSU, SSU, RPB1, RPB2, CYTB and TEF1), and whole genome sequencing (WGS) was carried out. This polyphasic taxonomic approach supported the conclusion that the two basidiomycetous yeasts belong to hitherto undescribed species. The strain FJI-L2-BK-P3T, isolated from the Jet Propulsion Laboratory Spacecraft Assembly Facility, was placed in the Naganishia albida clade (Filobasidiales, Tremellomycetes), but is genetically and physiologically different from other members of the clade. Another yeast strain FKI-L6-BK-PAB1T, isolated from the Kennedy Space Center Payload Hazardous and Servicing Facility, was placed in the genus Cystobasidium (Cystobasidiales, Cystobasidiomycetes) and is distantly related to C. benthicum. Here we propose two novel species with the type strains, Naganishia kalamii sp. nov. (FJI-L2-BK-P3T = NRRL 64466 = DSM 115730) and Cystobasidium onofrii sp. nov. (FKI-L6-BK-PAB1T = NRRL 64426 = DSM 114625). The phylogenetic analyses revealed that single gene phylogenies (ITS or LSU) were not conclusive, and MLSA and WGS-based phylogenies were more advantageous for species discrimination in the two genera. The genomic analysis predicted proteins associated with dehydration and desiccation stress-response and the presence of genes that are directly related to osmotolerance and psychrotolerance in both novel yeasts described. Cells of these two newly-described yeasts were exposed to UV-C radiation and compared with N. onofrii, an extremophilic UV-C resistant cold-adapted Alpine yeast. Both novel species were UV resistant, emphasizing the need for collecting and characterizing extremotolerant microbes, including yeasts, to improve microbial reduction techniques used in NASA planetary protection programs.

19.
PLoS One ; 18(3): e0282428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36947490

RESUMO

The National Aeronautics and Space Administration (NASA) has been monitoring the microbial burden of spacecraft since the 1970's Viking missions. Originally culture-based and then focused 16S sequencing techniques were used, but we have now applied whole metagenomic sequencing to a variety of cleanroom samples at the Jet Propulsion Lab (JPL), including the Spacecraft Assembly Facility (SAF) with the goals of taxonomic identification and for functional assignment. Our samples included facility pre-filters, cleanroom vacuum debris, and surface wipes. The taxonomic composition was carried out by three different analysis tools to contrast marker, k-mer, and true alignment approaches. Hierarchical clustering analysis of the data separated vacuum particles from other SAF DNA samples. Vacuum particle samples were the most diverse while DNA samples from the ISO (International Standards Organization) compliant facilities and the SAF were the least diverse; all three were dominated by Proteobacteria. Wipe samples had higher diversity and were predominated by Actinobacteria, including human commensals Cutibacterium acnes and Corynebacterium spp. Taxa identified by the three methods were not identical, supporting the use of multiple methods for metagenome characterization. Likewise, functional annotation was performed using multiple methods. Vacuum particles and SAF samples contained strong signals of the tricarboxylic acid cycle and of amino acid biosynthesis, suggesting that many of the identified microorganisms have the ability to grow in nutrient-limited environments. In total, 18 samples generated high quality metagenome assembled genomes (MAG), which were dominated by Moraxella osloensis or Malassezia restricta. One M. osloensis MAG was assembled into a single circular scaffold and gene annotated. This study includes a rigorous quantitative determination of microbial loads and a qualitative dissection of microbial composition. Assembly of multiple specimens led to greater confidence for the identification of particular species and their predicted functional roles.


Assuntos
Metagenoma , Astronave , Humanos , Bactérias/genética
20.
Sci Rep ; 13(1): 19207, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932283

RESUMO

With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habitats, and how microbes survive, proliferate and spread in space conditions, is becoming more important. The microbial tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-stain-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the ISS. The analysis of their 16S rRNA gene sequences revealed > 99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing was undertaken. For all strains, the gyrB gene exhibited < 93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average nucleotide identity and digital DNA-DNA hybridization values, when compared to any known bacterial species, were < 94% and <50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including ß-lactone and type III polyketide synthase (T3PKS) clusters. Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (= NRRL B-65660T = DSM 115933T), Leifsonia virtsii F6_8S_P_1AT (= NRRL B-65661T = DSM 115931T), Leifsonia williamsii F6_8S_P_1BT (= NRRL B-65662T = DSM 115932T), Paenibacillus vandeheii F6_3S_P_1CT (= NRRL B-65663T = DSM 115940T), and Sporosarcina highlanderae F6_3S_P_2T (= NRRL B-65664T = DSM 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.


Assuntos
Metagenoma , Paenibacillus , Humanos , Filogenia , RNA Ribossômico 16S/genética , Prevalência , Fenótipo , Paenibacillus/genética , Ácidos Graxos/análise , DNA , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA