Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38055361

RESUMO

The revolution in sequencing technologies has enabled human genomes to be sequenced at a very low cost and time leading to exponential growth in the availability of whole-genome sequences. However, the complete understanding of our genome and its association with cancer is a far way to go. Researchers are striving hard to detect new variants and find their association with diseases, which further gives rise to the need for aggregation of this Big Data into a common standard scalable platform. In this work, a database named Enlightenment has been implemented which makes the availability of genomic data integrated from eight public databases, and DNA sequencing profiles of H. sapiens in a single platform. Annotated results with respect to cancer specific biomarkers, pharmacogenetic biomarkers and its association with variability in drug response, and DNA profiles along with novel copy number variants are computed and stored, which are accessible through a web interface. In order to overcome the challenge of storage and processing of NGS technology-based whole-genome DNA sequences, Enlightenment has been extended and deployed to a flexible and horizontally scalable database HBase, which is distributed over a hadoop cluster, which would enable the integration of other omics data into the database for enlightening the path towards eradication of cancer.


Assuntos
Neoplasias , Nucleotídeos , Humanos , Genômica/métodos , Análise de Sequência de DNA/métodos , Neoplasias/genética , Biomarcadores , Sequenciamento de Nucleotídeos em Larga Escala
2.
J Bioinform Comput Biol ; 22(3): 2450009, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39030667

RESUMO

A turning point in cancer research is the introduction of massively parallel sequencing technology which greatly reduced the cost and time for genome sequencing. This enhanced the scope for detecting and analyzing the role of structural alterations in cancer. However, certain bias exists in NGS-based approaches, which badly affects the CNV identification process. Moreover, DNA repeats existing in CNV regions need special attention as they will degrade the performance of majority of the existing CNV detection tools, even after applying generalized bias correction method. This motivated this work, where a novel method has been designed to address the issue of DNA repeats and thereby mappability bias existing in regions of CNV. The method consists of three phases, where the first phase computes the alignment information of uniquely mapped DNA reads, considering the base quality and base mismatch parameters at nucleotide level precision. The second and the third phase use a novel approach to allocate the non-uniquely mapped reads to an optimal region of the DNA repeats based on a probabilistic membership model. The proposed method is capable of identifying CNVs present in coding, as well as non-coding region of the DNA, and is also capable of detecting CNVs existing in DNA repeat regions. The methodology achieves a sensitivity greater than [Formula: see text] during the performed simulations, and on real data, the detected variants are validated with the database of genomic variants, where the percentage overlap is also greater than 95%, and has achieved much better breakpoint prediction, as compared with other popular bias correction CNV detection methods.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Análise de Sequência de DNA/métodos , Algoritmos , Neoplasias/genética , DNA/genética , Sequências Repetitivas de Ácido Nucleico
3.
ACS Omega ; 9(13): 14860-14866, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585097

RESUMO

In the current research, dye-embedded polylactic acid (PLA) conjugate materials were synthesized using one-pot ring-opening polymerization (ROP), i.e., (dtHPLA) (2-[(2,4,6-trimethylphenyl) imino]-1(2H)-acenaphthylenone-reduced-PLA) and (dmHPLA) (monoiminoacenaphtheneone-reduced-PLA), and then, nanoparticles (NPs) were engineered in the size range of 150 ± 30 nm. P(dtHPLA) NPs were employed in the treatment of melanoma, an aggressive type of skin cancer, which mandates the development of novel techniques to enhance healing outcomes and eliminate adverse effects related to existing treatments. In addition to exhibiting strong intracellular absorption in the spheroid model, the P(dtHPLA) NPs exhibited a strong cytotoxic effect on B16F10 cells, which resulted in oxidative stress from the generation of reactive oxygen species (ROS) and cell death. Additionally, a live/dead experiment using P(dtHPLA) NPs revealed a notable reduction in cell viability.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32750860

RESUMO

Identifying intragenic as well as intergenic sequences of the DNA, having structural alterations, is a significantly important research area, since this may be the root cause of many neurological and autoimmune diseases, including cancer. Working with whole genome NGS data has provided a new insight in this regard, but has lead to huge explosion of data that is growing exponentially. Hence, the challenges lie in efficient means of storage and processing this big data. In this study, we have developed a novel segmentation algorithm, called GenSeg, and its parallel MapReduce based algorithm, called MR-GenSeg, for detecting copy number variations. In order to annotate CNVs (variants), segments formed by GenSeg/MR-GenSeg have been represented in a novel way using a binary tree, where each node is a CNV event. GenSeg considers each position specific data of whole genome DNA sequence, so that precise identification of breakpoints is possible. GenSeg/MR-GenSeg has been compared with twelve popular CNV detection algorithms, where it has outperformed the others in terms of sensitivity, and has achieved a good F-score value. MR-GenSeg has excelled in terms of SpeedUp, when compared with these algorithms. The effect of CNVs on immunoglobulin (IG) genes has also been analysed in this study. Availability: The source codes are available at https://github.com/rituparna-sinha/MapReduce-GENSEG.


Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Algoritmos , Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Genômica , Humanos , Software
5.
Artigo em Inglês | MEDLINE | ID: mdl-29993814

RESUMO

Massively parallel sequencing technique, introduced by NGS technology, has resulted in an exponential growth of sequencing data, with greatly reduced cost and increased throughput. This huge explosion of data has introduced new challenges in regard to its storage, integration, processing and analyses. In this paper, we have proposed a novel distributed model under Map-Reduce paradigm to address the NGS big data problem. The architecture of the model involves Map-Reduce based modularized approach involving 3 different phases that support various analytical pipelines. The first phase will generate detailed base level information of various individual genomes, by granulating the alignment data. The other 2 phases independently process this base level information in parallel. One of these 2 phases will provide an integrated DNA profile of multiple individuals, whereas the other phase will generate contigs with similar features in an individual. Each of these 2 phases will generate a repository of genomic information that will facilitate other analytical pipelines. A simulated and real experimental prototypes has been provided as results to show the effectiveness of the model and its superiority over a few existing popular models and tools. A detailed description of the scope of applications of this model is also included in this article.

6.
PLoS One ; 10(8): e0135895, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26291322

RESUMO

Copy number variation (CNV) is a form of structural alteration in the mammalian DNA sequence, which are associated with many complex neurological diseases as well as cancer. The development of next generation sequencing (NGS) technology provides us a new dimension towards detection of genomic locations with copy number variations. Here we develop an algorithm for detecting CNVs, which is based on depth of coverage data generated by NGS technology. In this work, we have used a novel way to represent the read count data as a two dimensional geometrical point. A key aspect of detecting the regions with CNVs, is to devise a proper segmentation algorithm that will distinguish the genomic locations having a significant difference in read count data. We have designed a new segmentation approach in this context, using convex hull algorithm on the geometrical representation of read count data. To our knowledge, most algorithms have used a single distribution model of read count data, but here in our approach, we have considered the read count data to follow two different distribution models independently, which adds to the robustness of detection of CNVs. In addition, our algorithm calls CNVs based on the multiple sample analysis approach resulting in a low false discovery rate with high precision.


Assuntos
Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Algoritmos , Bases de Dados de Ácidos Nucleicos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA