Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(36): 24819-24828, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671772

RESUMO

Radiation damage in biological systems by ionizing radiation is predominantly caused by secondary processes such as charge and energy transfer leading to the breaking of bonds in DNA. Here, we study the fragmentation of cytosine (Cyt) and thymine (Thy) molecules, clusters and microhydrated derivatives induced by direct and indirect ionization initiated by extreme-ultraviolet (XUV) irradiation. Photofragmentation mass spectra and photoelectron spectra of free Cyt and Thy molecules are compared with mass and electron spectra of Cyt/Thy clusters and microhydrated Cyt/Thy molecules formed by aggregation in superfluid helium (He) nanodroplets. Penning ionization after resonant excitation of the He droplets is generally found to cause less fragmentation compared to direct photoionization and charge-transfer ionization after photoionization of the He droplets. When Cyt/Thy molecules and oligomers are complexed with water molecules, their fragmentation is efficiently suppressed. However, a similar suppression of fragmentation is observed when homogeneous Cyt/Thy clusters are formed in He nanodroplets, indicating a general trend. Penning ionization electron spectra (PIES) of Cyt/Thy are broad and nearly featureless but PIES of their microhydrated derivatives point at a sequential ionization process ending in unfragmented microsolvated Cyt/Thy cations.

2.
J Chem Phys ; 159(3)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37458351

RESUMO

Photoionization spectroscopy and mass spectrometry of doped helium (He) nanodroplets rely on the ability to efficiently detect ions and/or electrons. Using a commercial quadrupole mass spectrometer and a photoelectron-photoion coincidence spectrometer, we systematically measure yields of ions and electrons created in pure and doped He nanodroplets in a wide size range and in two ionization regimes-direct ionization and secondary ionization after resonant photoexcitation of the droplets. For two different types of dopants (oxygen molecules, O2, and lithium atoms, Li), we infer the optimal droplet size to maximize the yield of ejected ions. When dopants are ionized by charge-transfer to photoionized He nanodroplets, the highest yield of O2 and Li ions is detected for a mean size of ∼5×104 He atoms per nanodroplet. When dopants are Penning ionized via photoexcitation of the He droplets, the highest yield of O2 and Li ions is detected for ∼103 and ∼105 He atoms per droplet, respectively. At optimum droplet sizes, the detection efficiency of dopant ions in proportion to the number of primary photoabsorption events is up to 20% for charge-transfer ionization of O2 and 2% for Li, whereas for Penning ionization it is 1% for O2 and 4% for Li. Our results are instrumental in determining optimal conditions for mass spectrometric studies and photoionization spectroscopy of molecules and complexes isolated in He nanodroplets.

3.
Nanoscale ; 15(34): 14025-14031, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37559557

RESUMO

Helium nanodroplets are ideal model systems to unravel the complex interaction of condensed matter with ionizing radiation. Here we study the effect of purely elastic electron scattering on angular and energy distributions of photoelectrons emitted from He nanodroplets of variable size (10-109 atoms per droplets). For large droplets, photoelectrons develop a pronounced anisotropy along the incident light beam due to a shadowing effect within the droplets. In contrast, the detected photoelectron spectra are only weakly perturbed. This opens up possibilities for photoelectron spectroscopy of dopants embedded in droplets provided they are smaller than the penetration depth of the light and the trapping range of emitted electrons in liquid helium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA