Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Neuroinflammation ; 21(1): 18, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212822

RESUMO

Lipoxins are small lipids that are potent endogenous mediators of systemic inflammation resolution in a variety of diseases. We previously reported that Lipoxins A4 and B4 (LXA4 and LXB4) have protective activities against neurodegenerative injury. Yet, lipoxin activities and downstream signaling in neuroinflammatory processes are not well understood. Here, we utilized a model of posterior uveitis induced by lipopolysaccharide endotoxin (LPS), which results in rapid retinal neuroinflammation primarily characterized by activation of resident macroglia (astrocytes and Müller glia), and microglia. Using this model, we observed that each lipoxin reduces acute inner retinal inflammation by affecting endogenous glial responses in a cascading sequence beginning with astrocytes and then microglia, depending on the timing of exposure; prophylactic or therapeutic. Subsequent analyses of retinal cytokines and chemokines revealed inhibition of both CXCL9 (MIG) and CXCL10 (IP10) by each lipoxin, compared to controls, following LPS injection. CXCL9 and CXCL10 are common ligands for the CXCR3 chemokine receptor, which is prominently expressed in inner retinal astrocytes and ganglion cells. We found that CXCR3 inhibition reduces LPS-induced neuroinflammation, while CXCR3 agonism alone induces astrocyte reactivity. Together, these data uncover a novel lipoxin-CXCR3 pathway to promote distinct anti-inflammatory and proresolution cascades in endogenous retinal glia.


Assuntos
Lipoxinas , Neuroglia , Doenças Neuroinflamatórias , Receptores CXCR3 , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Lipoxinas/farmacologia , Lipoxinas/metabolismo , Neuroglia/metabolismo , Animais
2.
J Biol Chem ; 296: 100118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33234594

RESUMO

Astrocytes can support neuronal survival through a range of secreted signals that protect against neurotoxicity, oxidative stress, and apoptotic cascades. Thus, analyzing the effects of the astrocyte secretome may provide valuable insight into these neuroprotective mechanisms. Previously, we characterized a potent neuroprotective activity mediated by retinal astrocyte conditioned media (ACM) on retinal and cortical neurons in metabolic stress models. However, the molecular mechanism underlying this complex activity in neuronal cells has remained unclear. Here, a chemical genetics screen of kinase inhibitors revealed phosphoinositide 3-kinase (PI3K) as a central player transducing ACM-mediated neuroprotection. To identify additional proteins contributing to the protective cascade, endogenous PI3K was immunoprecipitated from neuronal cells exposed to ACM or control media, followed by MS/MS proteomic analyses. These data pointed toward a relatively small number of proteins that coimmunoprecipitated with PI3K, and surprisingly only five were regulated by the ACM signal. These hits included expected PI3K interactors, such as the platelet-derived growth factor receptor A (PDGFRA), as well as novel RNA-binding protein interactors ZC3H14 (zinc finger CCCH-type containing 14) and THOC1 (THO complex protein 1). In particular, ZC3H14 has recently emerged as an important RNA-binding protein with multiple roles in posttranscriptional regulation. In validation studies, we show that PI3K recruitment of ZC3H14 is necessary for PDGF-induced neuroprotection and that this interaction is present in primary retinal ganglion cells. Thus, we identified a novel non-cell autonomous neuroprotective signaling cascade mediated through PI3K that requires recruitment of ZC3H14 and may present a promising strategy to promote astrocyte-secreted prosurvival signals.


Assuntos
Astrócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Imunoprecipitação , Neuroproteção/fisiologia , Fosfatidilinositol 3-Quinases/química , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a RNA/genética , Espectrometria de Massas em Tandem
3.
J Cell Physiol ; 237(9): 3687-3702, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862065

RESUMO

Glaucoma is a common neurodegenerative blinding disease that is closely associated with chronic biomechanical strain at the optic nerve head (ONH). Yet, the cellular injury and mechanosensing mechanisms underlying the resulting damage have remained critically unclear. We previously identified Annexin A4 (ANXA4) from a proteomic analyses of human ONH astrocytes undergoing pathological biomechanical strain that mimics glaucomatous conditions. Annexins are a family of calcium-dependent phospholipid binding proteins with key functions in plasma membrane repair (PMR); an active mechanism to limit and mend cellular injury that involves membrane and cytoskeletal reorganizations. However, a role for direct membrane damage and PMR has not been well studied in the context of biomechanical strain, such as that associated with glaucoma. Here we report that this moderate strain surprisingly damages cell membranes to increase permeability in a calcium-dependent manner, and induces rapid aggregation of ANXA4 at injury sites. ANXA4 loss-of-function increases permeability, while exogenous ANXA4 reduces it. Furthermore, ANXA4 aggregation is associated with F-actin dynamics in vitro, and remarkably this interaction and aggregation signature is also observed in the glaucomatous ONH in patient samples. Together these studies link moderate biomechanical strain with direct membrane damage and actin dynamics, and identify an active PMR role for ANXA4 in new model of cell injury associated with glaucoma pathogenesis.


Assuntos
Anexina A4 , Glaucoma , Anexina A4/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Glaucoma/metabolismo , Humanos , Proteômica
4.
Chemistry ; 28(35): e202200360, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35491534

RESUMO

Two stereocontrolled, efficient, and modular syntheses of eicosanoid lipoxin B4 (LXB4 ) are reported. One features a stereoselective reduction followed by an asymmetric epoxidation sequence to set the vicinal diol stereocentres. The dienyne was installed via a one-pot Wittig olefination and base-mediated epoxide ring opening cascade. The other approach installed the diol through an asymmetric dihydroxylation reaction followed by a Horner-Wadsworth-Emmons olefination to afford the common dienyne intermediate. Finally, a Sonogashira coupling and an alkyne hydrosilylation/proto-desilylation protocol furnished LXB4 in 25 % overall yield in just 10 steps. For the first time, LXB4 has been fully characterized spectroscopically with its structure confirmed as previously reported. We have demonstrated that the synthesized LXB4 showed similar biological activity to commercial sources in a cellular neuroprotection model. This synthetic route can be employed to synthesize large quantities of LXB4 , enable synthesis of new analogs, and chemical probes for receptor and pathway characterization.


Assuntos
Lipoxinas , Doenças Neuroinflamatórias , Eicosanoides , Humanos , Lipoxinas/metabolismo
5.
Exp Eye Res ; 183: 84-87, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29758190

RESUMO

It has been speculated that the unitary eyes of vertebrates and molluscs, and the compound eyes of insects and crustaceans, evolved separately. On the other hand, the common use of rhodopsin as a photoreceptor molecule, and the conservation of Pax6 as a master control gene for eye development, suggest instead that the eye evolved once. Yet, recently the molecular genetics that had seemed to suggest a definitive answer to this evolutionary point has once again become cloudy. Here we propose an alternative approach to addressing the question of eye evolution through comparative analyses of physiological optics. Serendipitous discoveries involving form deprivation and defocusing with young monkeys and chicks demonstrated the conserved importance of visual experience on eye development. Similar results have been demonstrated in teleosts, although differences exist in eye anatomy, physiology and optics. In particular, since fish grow throughout life, these effects can also be demonstrated in adults. In comparison, the cephalopod eye is an often-cited example of convergent evolution with the vertebrate eye, although considerable developmental differences exist. Nevertheless, squid eyes from animals raised under alternative lighting exhibit anatomical and refractive changes that agree with those found in vertebrates. Together, these observations provide functional and structural support for the view that the eye evolved once. Because of their very compressed lifespans (only one to two years) cephalopods may be ideal animal models for the study of ocular refractive development.


Assuntos
Proteínas do Olho/fisiologia , Olho/crescimento & desenvolvimento , Refração Ocular/fisiologia , Animais , Humanos
6.
Exp Eye Res ; 183: 88-97, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30447198

RESUMO

Glaucoma describes a distinct optic neuropathy with complex etiology and a variety of associated risk factors, but with similar pathological endpoints. Risk factors such as age, increased intraocular pressure (IOP), low mean arterial pressure, and autoimmune disease, can all be associated with death of retinal ganglion cells (RGCs) and optic nerve head remodeling. Today, IOP management remains the standard of care, even though IOP elevation is not pathognomonic of glaucoma, and patients can continue to lose vision despite effective IOP control. A contemporary view of glaucoma as a complex, neurodegenerative disease has developed, along with the recognition of a need for new disease modifying retinal treatment strategies and improved outcomes. However, the distinction between risk factors triggering the disease process and retinal injury responses is not always clear. In this review, we attempt to distinguish between the various triggers, and their association with subsequent key RGC injury mechanisms. We propose that distinct glaucomatous risk factors result in similar retinal and optic nerve injury cascades, including oxidative and metabolic stress, glial reactivity, and altered inflammatory responses, which induce common molecular signals to induce RGC apoptosis. This organization forms a coherent disease framework and presents conserved targets for therapeutic intervention that are not limited to specific risk factors.


Assuntos
Glaucoma/complicações , Pressão Intraocular/fisiologia , Doenças Neurodegenerativas , Doenças do Nervo Óptico/etiologia , Nervo Óptico/patologia , Estresse Oxidativo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Progressão da Doença , Glaucoma/diagnóstico , Humanos , Doenças do Nervo Óptico/diagnóstico , Doenças do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Fatores de Risco
7.
Neurobiol Dis ; 113: 59-69, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29438738

RESUMO

Neurons are highly sensitive to metabolic and oxidative injury, but endogenous astrocyte mechanisms have a critical capacity to provide protection from these stresses. We previously reported that the master regulator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α) is necessary for retinal astrocytes to mount effective injury responses, with particular regard to oxidative stress. Yet, this pathway has not been well studied in glia. PGC-1α is a transcriptional co-activator that is dysregulated in a variety of neurodegenerative diseases. It functions as a master regulator of cellular bioenergetics, with the ability to regulate tissue specific responses. A key inducer of PGC-1α signaling is adenosine monophosphate-activated kinase (AMPK). Thus, the AMPK-PGC-1α signaling axis coordinates metabolic and oxidative damage responses in the central nervous system (CNS). Here we report that AMPK selectively regulates expression of GCLM (glutamate cysteine ligase modulatory subunit) in astrocytes, but not neurons, through PGC-1α activation. Glutamate cysteine ligase (GCL) is the rate limiting enzyme in the biosynthesis of glutathione (GSH); a critical antioxidant and detoxifying peptide in the CNS. Through this mechanism we describe PGC-1α-dependent induction of GSH synthesis and antioxidant activity in astrocytes, and in the rodent retina in vivo. Furthermore, we demonstrate that therapeutic agonism of this pathway with the AMP mimetic, AICAR, rescues GSH levels in vivo, while reducing RGC death and astrocyte reactivity, following retinal ischemia/reperfusion injury. This mechanism presents a novel strategy for enhancing protective astrocyte antioxidant capacity in the CNS.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Astrócitos/metabolismo , Metabolismo Energético/fisiologia , Glutationa/metabolismo , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Metabolismo Energético/efeitos dos fármacos , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Ribonucleotídeos/metabolismo , Ribonucleotídeos/farmacologia
8.
Anesthesiology ; 129(3): 477-489, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29889105

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Postoperative delirium is associated with poor long-term outcomes and increased mortality. General anesthetic drugs may contribute to delirium because they increase cell-surface expression and function of α5 subunit-containing γ-aminobutyric acid type A receptors, an effect that persists long after the drugs have been eliminated. Dexmedetomidine, an α2 adrenergic receptor agonist, prevents delirium in patients and reduces cognitive deficits in animals. Thus, it was postulated that dexmedetomidine prevents excessive function of α5 γ-aminobutyric acid type A receptors. METHODS: Injectable (etomidate) and inhaled (sevoflurane) anesthetic drugs were studied using cultured murine hippocampal neurons, cultured murine and human cortical astrocytes, and ex vivo murine hippocampal slices. γ-Aminobutyric acid type A receptor function and cell-signaling pathways were studied using electrophysiologic and biochemical methods. Memory and problem-solving behaviors were also studied. RESULTS: The etomidate-induced sustained increase in α5 γ-aminobutyric acid type A receptor cell-surface expression was reduced by dexmedetomidine (mean ± SD, etomidate: 146.4 ± 51.6% vs. etomidate + dexmedetomidine: 118.4 ± 39.1% of control, n = 8 each). Dexmedetomidine also reduced the persistent increase in tonic inhibitory current in hippocampal neurons (etomidate: 1.44 ± 0.33 pA/pF, n = 10; etomidate + dexmedetomidine: 1.01 ± 0.45 pA/pF, n = 9). Similarly, dexmedetomidine prevented a sevoflurane-induced increase in the tonic current. Dexmedetomidine stimulated astrocytes to release brain-derived neurotrophic factor, which acted as a paracrine factor to reduce excessive α5 γ-aminobutyric acid type A receptor function in neurons. Finally, dexmedetomidine attenuated memory and problem-solving deficits after anesthesia. CONCLUSIONS: Dexmedetomidine prevented excessive α5 γ-aminobutyric acid type A receptor function after anesthesia. This novel α2 adrenergic receptor- and brain-derived neurotrophic factor-dependent pathway may be targeted to prevent delirium.


Assuntos
Anestésicos Intravenosos/farmacologia , Dexmedetomidina/farmacologia , Etomidato/farmacologia , Hipnóticos e Sedativos/farmacologia , Receptores de GABA-A/fisiologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Células Cultivadas , Técnicas de Cocultura , Função Executiva/efeitos dos fármacos , Função Executiva/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Exp Cell Res ; 340(2): 283-94, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26615958

RESUMO

Biomechanical insult contributes to many chronic pathological processes, yet the resulting influences on signal transduction mechanisms are poorly understood. The retina presents an excellent mechanotransduction model, as mechanical strain on sensitive astrocytes of the optic nerve head (ONH) is intimately linked to chronic tissue remodeling and excavation by matrix metalloproteinases (MMPs), and apoptotic cell death. However, the mechanism by which these effects are induced by biomechanical strain is unclear. We previously identified the small adapter protein, PEA-15 (phosphoprotein enriched in astrocytes), through proteomic analyses of human ONH astrocytes subjected to pathologically relevant biomechanical insult. Under resting conditions PEA-15 is regulated through phosphorylation of two key serine residues to inhibit extrinsic apoptosis and ERK1/2 signaling. However, we surprisingly observed that biomechanical insult dramatically switches PEA-15 phosphorylation and function to uncouple its anti-apoptotic activity, and promote ERK1/2-dependent MMP-2 and MMP-9 secretion. These results reveal a novel cell autonomous mechanism by which biomechanical strain rapidly modifies this signaling pathway to generate altered tissue injury responses.


Assuntos
Apoptose/fisiologia , Astrócitos/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Mecanotransdução Celular/fisiologia , Fosfoproteínas/metabolismo , Retina/citologia , Animais , Proteínas Reguladoras de Apoptose , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosforilação , Proteômica , Ratos Wistar
10.
Am J Pathol ; 184(4): 1017-1029, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24508229

RESUMO

Retinal ganglion cells (RGCs), used as a common model of central nervous system injury, are particularly vulnerable to metabolic and oxidative damage. However, molecular mechanisms underlying this sensitivity have not been determined in vivo. PGC-1α (encoded by PPARGC1A) regulates adaptive metabolism and oxidative stress responses in a tissue- and cell-specific manner. Aberrant PGC-1α signaling is implicated in neurodegeneration, but the mechanism underlying its role in central nervous system injury remains unclear. We provide evidence from a mouse model that PGC-1α expression and activity are induced in adult retina in response to metabolic and oxidative challenge. Deletion of Ppargc1a dramatically increased RGC loss, in association with dysregulated expression of PGC-1α target metabolic and oxidative stress response genes, including Hmox1 (encoding HO-1), Tfam, and Vegfa. Vehicle-treated and naive Ppargc1a(-/-) mice also showed mild RGC loss, and surprisingly prominent and consistent retinal astrocyte reactivity. These cells critically regulate metabolic homeostasis in the inner retina. We show that PGC-1α signaling (not previously studied in glia) regulates detoxifying astrocyte responses to hypoxic and oxidative stresses. Finally, PGC-1α expression was modulated in the inner retina with age and in a model of chronic optic neuropathy. These data implicate PGC-1α signaling as an important regulator of astrocyte reactivity and RGC homeostasis to coordinate pathogenic susceptibility to metabolic and oxidative injury in the inner retina.


Assuntos
Estresse Oxidativo/fisiologia , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/fisiologia , Animais , Astrócitos/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Células Ganglionares da Retina/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo
11.
Mol Vis ; 21: 131-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25684978

RESUMO

PURPOSE: HLA-B27 is a major histocompatibility complex class I (MHCI) allele that has been closely associated with the development of ankylosing spondylitis and acute anterior uveitis (AAU), the most common form of uveitis worldwide. We have been characterizing the phenotypes of transgenic mice carrying a human HLA-B27 allele, but that are deficient in endogenous mouse MHCI genes (H-2K(-/-) and H-2D(-/-) double knockout, or DKO) to create the HLA-B27/DKO line. In maintaining and expanding this colony, we observed a rare sporadic severe central keratitis that developed in transgenic animals, but that was not present in wild-type (WT) animals. METHODS: The corneas of affected HLA-B27/DKO and DKO mice were compared to their WT counterparts by staining with standard histological methods for markers of inflammation and neovascularization. A model of experimental corneal inflammation was subsequently used to test the responses of each genotype to insult. RESULTS: We identified a previously unreported corneal pathology in naïve HLA-B27/DKO mice, and we describe significantly prolonged CD4(+)- and CD8(+)-associated inflammation in these animals following an experimentally induced corneal injury. CONCLUSIONS: These results demonstrate an increased T-cell response in B27/DKO corneas due to the expression of the HLA-B27 allele, suggesting that low MHCI expression in WT corneas is an important contributor to immune privilege.


Assuntos
Córnea/patologia , Antígenos H-2/genética , Antígeno HLA-B27/genética , Antígeno de Histocompatibilidade H-2D/genética , Ceratite/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Córnea/imunologia , Feminino , Deleção de Genes , Expressão Gênica , Antígenos H-2/imunologia , Antígeno HLA-B27/imunologia , Antígeno de Histocompatibilidade H-2D/imunologia , Humanos , Ceratite/imunologia , Ceratite/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transgenes
12.
Mol Cell Proteomics ; 11(2): M111.012302, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22126795

RESUMO

We investigate the role of glial cell activation in the human optic nerve caused by raised intraocular pressure, and their potential role in the development of glaucomatous optic neuropathy. To do this we present a proteomics study of the response of cultured, optic nerve head astrocytes to biomechanical strain, the magnitude and mode of strain based on previously published quantitative models. In this case, astrocytes were subjected to 3 and 12% stretches for either 2 h or 24 h. Proteomic methods included nano-liquid chromatography, tandem mass spectrometry, and iTRAQ labeling. Using controls for both stretch and time, a six-plex iTRAQ liquid chromatography- tandem MS (LC/MS/MS) experiment yielded 573 proteins discovered at a 95% confidence limit. The pathways included transforming growth factor ß1, tumor necrosis factor, caspase 3, and tumor protein p53, which have all been implicated in the activation of astrocytes and are believed to play a role in the development of glaucomatous optic neuropathy. Confirmation of the iTRAQ analysis was performed by Western blotting of various proteins of interest including ANXA 4, GOLGA2, and αB-Crystallin.


Assuntos
Astrócitos/metabolismo , Neuroglia/metabolismo , Disco Óptico/metabolismo , Doenças do Nervo Óptico/metabolismo , Proteoma/análise , Proteômica , Estresse Mecânico , Astrócitos/citologia , Western Blotting , Células Cultivadas , Cromatografia Líquida , Humanos , Técnicas Imunoenzimáticas , Neuroglia/citologia , Disco Óptico/citologia , Doenças do Nervo Óptico/etiologia , Doenças do Nervo Óptico/patologia , Espectrometria de Massas em Tandem
13.
Nanomedicine ; 10(8): 1637-47, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24905400

RESUMO

Gene therapy could offer improvement in the treatment of glaucoma compared to the current standard of lowering intraocular pressure. We have developed and characterized non-viral gemini surfactant-phospholipid nanoparticles (GL-NPs) for intravitreal and topical administration. Optimized GL-NPs (size range 150-180 nm) were biocompatible with rat retinal ganglion (RGC-5) cells with >95% viability by PrestoBlue™ assay. GL-NPs carrying Cy5-labeled plasmid DNA demonstrated distinct trafficking behavior and biodisposition within the eye in vivo after intravitreal or topical application with respect to pathways of movement and physicochemical stability. After intravitreal injection in mice, GL-NPs localized within the nerve fiber layer of the retina, whereas after topical application, GL-NPs were located in several anterior chamber tissues, including the limbus, iris and conjunctiva. GL-NPs were thermodynamically stable in the vitreous and tear fluid and were trafficked as single, non-aggregated particles after both types of administration. FROM THE CLINICAL EDITOR: In this paper, the development and characterization of non-viral gemini surfactant-phospholipid nanoparticles is reported with the goal of establishing a gene delivery system that addresses glaucoma in a non-invasive fashion. The authors found that after topical application, the concentration of these nanoparticles was higher in anterior chamber-related components of the eye, whereas intra-vitreal administration resulted in accumulation in the retinal nerve fibre layer.


Assuntos
Olho/metabolismo , Terapia Genética/métodos , Glaucoma/terapia , Nanopartículas/química , Administração Tópica , Animais , Técnicas de Transferência de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293224

RESUMO

Glaucoma is a common neurodegenerative disease characterized by progressive degeneration of retinal ganglion cells (RGCs) and the retinal nerve fiber layer (RNFL), resulting in a gradual decline of vision. A recent study by our groups indicated that the levels of lipoxins A4 (LXA4) and B4 (LXB4) in the retina and optic nerve decrease following acute injury, and that restoring their function is neuroprotective. Lipoxins are members of the specialized pro-resolving mediator (SPM) family and play key roles to mitigate and resolve chronic inflammation and tissue damage. Yet, knowledge about lipoxin neuroprotective activity remains limited. Here we investigate the in vivo efficacy of exogenous LXA4 and LXB4 administration on the inner retina in a mouse model of chronic experimental glaucoma. To investigate the contribution of LXA4 signaling we used transgenic knockout (KO) mice lacking the two mouse LXA4 receptors (Fpr2/Fpr3-/-). Functional and structural changes of inner retinal neurons were assessed longitudinally using electroretinogram (ERG) and optical coherence tomography (OCT). At the end of the experiment, retinal samples were harvested for immunohistological assessment. While both lipoxins generated protective trends, only LXB4 treatment was significant, and consistently more efficacious than LXA4 in all endpoints. Both lipoxins also appeared to dramatically reduce Müller glial reactivity following injury. In comparison, Fpr2/Fpr3 deletion significantly worsened inner retinal injury and function, consistent with an essential protective role for endogenous LXA4. Together, these results support further exploration of lipoxin signaling as a treatment for glaucomatous neurodegeneration.

15.
Cell Rep ; 42(8): 112925, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37552601

RESUMO

The neddylation inhibitor MLN4924/Pevonedistat is in clinical trials for multiple cancers. Efficacy is generally attributed to cullin RING ligase (CRL) inhibition, but the contribution of non-CRL targets is unknown. Here, CRISPR screens map MLN4924-monotherapy sensitivity in retinoblastoma to a classic DNA damage-induced p53/E2F3/BAX-dependent death effector network, which synergizes with Nutlin3a or Navitoclax. In monotherapy-resistant cells, MLN4924 plus standard-of-care topotecan overcomes resistance, but reduces DNA damage, instead harnessing ribosomal protein nucleolar-expulsion to engage an RPL11/p21/MYCN/E2F3/p53/BAX synergy network that exhibits extensive cross-regulation. Strikingly, unneddylatable RPL11 substitutes for MLN4924 to perturb nucleolar function and enhance topotecan efficacy. Orthotopic tumors exhibit complete responses while preserving visual function. Moreover, MLN4924 plus melphalan deploy this DNA damage-independent strategy to synergistically kill multiple myeloma cells. Thus, MLN4924 synergizes with standard-of-care drugs to unlock a nucleolar death effector network across cancer types implying broad therapeutic relevance.


Assuntos
Topotecan , Proteína Supressora de Tumor p53 , Proteína X Associada a bcl-2 , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Proteínas Ribossômicas , Apoptose , Proteína NEDD8
16.
J Biol Chem ; 286(52): 44965-75, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22072717

RESUMO

Pathological neovascularization occurs when a balance of pro- and anti-angiogenic factors is disrupted, accompanied by an amplifying inflammatory cascade. However, the interdependence of these responses and the mechanism triggering the initial angiogenic switch have remained unclear. We present data from an epithelial debridement model of corneal neovascularization describing an initial 3-day period when a substantial component of neovascular growth occurs. Administration of selective inhibitors shows that this initial growth requires signaling through VEGFR-2 (vascular endothelial growth factor receptor-2), independent of the accompanying inflammatory response. Instead, increased VEGF production is found prominently in repair epithelial cells and is increased prior to recruitment of neutrophil/granulocytes and macrophage/monocytes. Consequently, early granulocyte and monocyte depletion has little effect on corneal neovascularization outgrowth. These data indicate that it is possible to pharmacologically uncouple these mechanisms during early injury-driven neovascularization in the cornea and suggest that initial tissue responses are coordinated by repair epithelial cells.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Epitélio/metabolismo , Animais , Córnea/metabolismo , Córnea/patologia , Neovascularização da Córnea/patologia , Epitélio/patologia , Feminino , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Monócitos/metabolismo , Monócitos/patologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Sci Rep ; 11(1): 22880, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819548

RESUMO

Glaucoma is a chronic and progressive neurodegenerative disease of the optic nerve resulting in loss of retinal ganglion cells (RGCs) and vision. The most prominent glaucoma risk factor is increased intraocular pressure (IOP), and most models focus on reproducing this aspect to study disease mechanisms and targets. Yet, current models result in IOP profiles that often do not resemble clinical glaucoma. Here we introduce a new model that results in a gradual and sustained IOP increase over time. This approach modifies a circumlimbal suture method, taking care to make the sutures 'snug' instead of tight, without inducing an initial IOP spike. This approach did not immediately affect IOPs, but generated gradual ocular hypertension (gOHT) as the sutures tighten over time, in comparison to loosely sutured control eyes (CON), resulting in an average 12.6 mmHg increase in IOP at 17 weeks (p < 0.001). Corresponding characterization revealed relevant retinal and optic nerve pathology, such as thinning of the retinal nerve fiber layer, decreased optokinetic response, RGC loss, and optic nerve head remodeling. Yet, angles remained open, with no evidence of inflammation. Corresponding biochemical profiling indicated significant increases in TGF-ß2 and 3, and IL-1 family cytokines in gOHT optic nerve tissues compared to CON, with accompanying microglial reactivity, consistent with active tissue injury and repair mechanisms. Remarkably, this signature was absent from optic nerves following acute ocular hypertension (aOHT) associated with intentionally tightened sutures, although the resulting RGC loss was similar in both methods. These results suggest that the pattern of IOP change has an important impact on underlying pathophysiology.


Assuntos
Glaucoma/fisiopatologia , Pressão Intraocular , Doenças Neuroinflamatórias/fisiopatologia , Nervo Óptico/fisiopatologia , Retina/fisiopatologia , Técnicas de Sutura , Animais , Modelos Animais de Doenças , Progressão da Doença , Glaucoma/etiologia , Glaucoma/metabolismo , Glaucoma/patologia , Mediadores da Inflamação/metabolismo , Interleucina-1/metabolismo , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Ratos Long-Evans , Retina/metabolismo , Retina/patologia , Fatores de Tempo , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta3/metabolismo
18.
Dev Cell ; 8(5): 689-701, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15866160

RESUMO

Vertebrate gastrulation requires coordination of mesoderm specification with morphogenetic movements. While both of these processes require FGF signaling, it is not known how mesoderm specification and cell movements are coordinated during gastrulation. The related Sprouty and Spred protein families are recently discovered regulators of receptor tyrosine kinase signaling. We identified two genes for each family in Xenopus tropicalis: Xtsprouty1, Xtsprouty2, Xtspred1, and Xtspred2. In gain- and loss-of-function experiments we show that XtSprouty and XtSpred proteins modulate different signaling pathways downstream of the FGF receptor (FGFR), and consequently different developmental processes. Notably, XtSproutys inhibit morphogenesis and Ca(2+) and PKCdelta signaling, leaving MAPK activation and mesoderm specification intact. In contrast, XtSpreds inhibit MAPK activation and mesoderm specification, with little effect on Ca(2+) or PKCdelta signaling. These differences, combined with the timing of their developmental expression, suggest a mechanism to switch FGFR signal interpretation to coordinate mesoderm formation and cell movements during gastrulation.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Mesoderma/citologia , Mesoderma/metabolismo , Proteínas de Xenopus/fisiologia , Xenopus/embriologia , Xenopus/fisiologia , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Sinalização do Cálcio , Movimento Celular , Gástrula/citologia , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Proteína Quinase C/metabolismo , Proteína Quinase C-delta , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Transdução de Sinais , Xenopus/genética , Proteínas de Xenopus/genética
19.
Mol Nutr Food Res ; 64(4): e1801076, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31797529

RESUMO

Lipoxins (LXs) are autacoids, specialized proresolving lipid mediators (SPMs) acting locally in a paracrine or autocrine fashion. They belong to a complex superfamily of dietary small polyunsaturated fatty acid (PUFA)-metabolites, which direct potent cellular responses to resolve inflammation and restore tissue homeostasis. Together, these SPM activities have been intensely studied in systemic inflammation and acute injury or infection, but less is known about LX signaling and activities in the central nervous system. LXs are derived from arachidonic acid, an omega-6 PUFA. In addition to well-established roles in systemic inflammation resolution, they have increasingly become implicated in regulating neuroinflammatory and neurodegenerative processes. In particular, chronic inflammation plays a central role in Alzheimer's disease (AD) etiology, and dysregulated LX production and activities have been reported in a variety of AD rodent models and clinical tissue samples, yet with complex and sometimes conflicting results. In addition, reduced LX production following retinal injury has been reported recently by the authors, and an intriguing direct neuronal activity promoting survival and homeostasis in retinal and cortical neurons is demonstrated. Here, the authors review and clarify this growing literature and suggest new research directions to further elaborate the role of lipoxins in neurodegeneration.


Assuntos
Inflamação/metabolismo , Lipoxinas/fisiologia , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Animais , Humanos , Lipoxinas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Proteína-Lisina 6-Oxidase/metabolismo
20.
Acta Ophthalmol ; 97(5): e673-e679, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30690929

RESUMO

PURPOSE: The aim of this study was to assess the relationship between retinal blood oxygen saturation (SO2 ) and specific aqueous humour (AH) concentrations of proangiogenic biomarkers in diabetic patients with nonproliferative diabetic retinopathy (NPDR) and to compare them with those of matched control subjects. METHODS: The sample comprised 14 participants with mild-to-moderate NPDR (69.1 ± 6.6 years) and 17 age-matched healthy controls (69.7 ± 6.3 years); all participants were previously scheduled for routine cataract extraction with intraocular lens implantation. Multiplex cytokine analyses of specific biomarkers, including vascular endothelial growth factor A (VEGF-A), angiopoietin2 (Ang2), epidermal growth factor (EGF), hepatocyte growth factor (HGF) and interleukin-8 (IL-8) were performed by BioPlex 200 system. Six non-invasive hyperspectral retinal images were acquired. RESULTS: Mean SO2 was significantly higher in both arterioles (94.4 ± 1.9 versus 93.0 ± 1.6) and venules (64.4 ± 5.6 versus 55.9 ± 4.8) of NPDR than in the healthy controls (p < 0.001). AH levels of HGF (p = 0.018), Ang2 (p = 0.005) and IL-8 (p = 0.034) were significantly higher, and EGF (p = 0.030) was significantly lower in NPDR subjects. The study demonstrated a correlation between venular retinal blood oxygen saturation and proangiogenic factors HGF (r = 0.558, p = 0.038), Ang2 (r = 0.556, p = 0.039) and EGF (r = -0.554, p = 0.040), but did not find any correlation for IL-8 (r = 0.330, p = 0.249) even though this biomarker was significantly higher in the diabetic group. CONCLUSION: To our knowledge, the present study is the first report considering the association between SO2 and AH concentrations of protein biomarkers in diabetic retinopathy. The biomarkers of interest have been shown to participate in cell death, which may explain higher oxygen saturation in NPDR.


Assuntos
Humor Aquoso/metabolismo , Citocinas/metabolismo , Retinopatia Diabética/metabolismo , Oxigênio/sangue , Fluxo Sanguíneo Regional/fisiologia , Vasos Retinianos/fisiopatologia , Idoso , Biomarcadores/metabolismo , Retinopatia Diabética/diagnóstico , Feminino , Seguimentos , Humanos , Masculino , Oximetria , Vasos Retinianos/diagnóstico por imagem , Fatores de Tempo , Tomografia de Coerência Óptica/métodos , Acuidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA