Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glia ; 71(11): 2642-2663, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37449457

RESUMO

The adult zebrafish brain, unlike mammals, has a remarkable regenerative capacity. Although inflammation in part hinders regeneration in mammals, it is necessary for zebrafish brain repair. Microglia are resident brain immune cells that regulate the inflammatory response. To explore the microglial role in repair, we used liposomal clodronate or colony stimulating factor-1 receptor (csf1r) inhibitor to suppress microglia after brain injury, and also examined regeneration in two genetic mutant lines that lack microglia. We found that microglial ablation impaired telencephalic regeneration after injury. Microglial suppression attenuated cell proliferation at the intermediate progenitor cell amplification stage of neurogenesis. Notably, the loss of microglia impaired phospho-Stat3 (signal transducer and activator of transcription 3) and ß-Catenin signaling after injury. Furthermore, the ectopic activation of Stat3 and ß-Catenin rescued neurogenesis defects caused by microglial loss. Microglial suppression also prolonged the post-injury inflammatory phase characterized by neutrophil accumulation, likely hindering the resolution of inflammation. These findings reveal specific roles of microglia and inflammatory signaling during zebrafish telencephalic regeneration that should advance strategies to improve mammalian brain repair.


Assuntos
Lesões Encefálicas , Microglia , Animais , Peixe-Zebra , Encéfalo , Neurogênese , Inflamação , Cateninas , Mamíferos
2.
Glia ; 62(12): 2061-79, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25043622

RESUMO

Zebrafish maintain a greater capacity than mammals for central nervous system repair after injury. Understanding differences in regenerative responses between different vertebrate species may shed light on mechanisms to improve repair in humans. Quinolinic acid is an excitotoxin that has been used to induce brain injury in rodents for modeling Huntington's disease and stroke. When injected into the adult rodent striatum, this toxin stimulates subventricular zone neurogenesis and neuroblast migration to injury. However, most new neurons fail to survive and lesion repair is minimal. We used quinolinic acid to lesion the adult zebrafish telencephalon to study reparative processes. We also used conditional transgenic lineage mapping of adult radial glial stem cells to explore survival and integration of neurons generated after injury. Telencephalic lesioning with quinolinic acid, and to a lesser extent vehicle injection, produced cell death, microglial infiltration, increased cell proliferation, and enhanced neurogenesis in the injured hemisphere. Lesion repair was more complete with quinolinic acid injection than after vehicle injection. Fate mapping of her4-expressing radial glia showed injury-induced expansion of radial glial stem cells that gave rise to neurons which migrated to injury, survived at least 8 weeks and formed long-distance projections that crossed the anterior commissure and synapsed in the contralateral hemisphere. These findings suggest that quinolinic acid lesioning of the zebrafish brain stimulates adult neural stem cells to produce robust regeneration with long-distance integration of new neurons. This model should prove useful for elucidating reparative mechanisms that can be applied to restorative therapies for mammalian brain injury.


Assuntos
Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Neurogênese/fisiologia , Neurônios/patologia , Actinina/genética , Actinina/metabolismo , Animais , Animais Geneticamente Modificados , Lesões Encefálicas/induzido quimicamente , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ventrículos Cerebrais/patologia , Modelos Animais de Doenças , Proteínas ELAV/metabolismo , Proteína Semelhante a ELAV 3 , Lateralidade Funcional , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ácido Quínico/toxicidade , Fatores de Tempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Development ; 138(15): 3199-211, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21750031

RESUMO

The neural circuits that control motor activities depend on the spatially and temporally ordered generation of distinct classes of spinal interneurons. Despite the importance of these interneurons, the mechanisms underlying their genesis are poorly understood. Here, we demonstrate that the Olig-related transcription factor Bhlhb5 (recently renamed Bhlhe22) plays two central roles in this process. Our findings suggest that Bhlhb5 repressor activity acts downstream of retinoid signaling and homeodomain proteins to promote the formation of dI6, V1 and V2 interneuron progenitors and their differentiated progeny. In addition, Bhlhb5 is required to organize the spatially restricted expression of the Notch ligands and Fringe proteins that both elicit the formation of the interneuron populations that arise adjacent to Bhlhb5(+) cells and influence the global pattern of neuronal differentiation. Through these actions, Bhlhb5 helps transform the spatial information established by morphogen signaling into local cell-cell interactions associated with Notch signaling that control the progression of neurogenesis and extend neuronal diversity within the developing spinal cord.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Interneurônios/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/classificação , Interneurônios/citologia , Neurônios/citologia , Neurônios/fisiologia , Receptores Notch/genética , Medula Espinal/embriologia , Células-Tronco/citologia , Células-Tronco/fisiologia
4.
Mol Cell Neurosci ; 49(1): 32-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21925604

RESUMO

Hindbrain rhombomere 1 (r1) is located caudal to the isthmus, a critical organizer region, and rostral to rhombomere 2 in the developing mouse brain. Dorsal r1 gives rise to the cerebellum, locus coeruleus, and several brainstem nuclei, whereas cells from ventral r1 contribute to the trochlear and trigeminal nuclei as well as serotonergic and GABAergic neurons of the dorsal raphe. Recent studies have identified several molecular events controlling dorsal r1 development. In contrast, very little is known about ventral r1 gene expression and the genetic mechanisms regulating its formation. Neurons with distinct neurotransmitter phenotypes have been identified in ventral r1 including GABAergic, serotonergic, and cholinergic neurons. Here we show that PITX2 marks a distinct population of GABAergic neurons in mouse embryonic ventral r1. This population appears to retain its GABAergic identity even in the absence of PITX2. We provide a comprehensive map of markers that places these PITX2-positive GABAergic neurons in a region of r1 that intersects and is potentially in communication with the dorsal raphe.


Assuntos
Neurônios GABAérgicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios/metabolismo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Cerebelo/embriologia , Cerebelo/metabolismo , Neurônios GABAérgicos/classificação , Neurônios GABAérgicos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neurônios/citologia , Rombencéfalo/embriologia , Proteína Homeobox PITX2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA