RESUMO
The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl- efflux and the subsequent paracellular Na+ transport. In this model, the Na+-K+ pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl- transport via basolateral Na+-K+-2Cl- cotransport is generated by the Na+-K+ pump. In addition, the continuous electrochemical gradient for Cl- flow during acinar cell stimulation is maintained by the basolateral K+ efflux. However, using a combination of single-cell electrophysiology and Ca2+-imaging, we demonstrate that photolysis of Ca2+ close to the apical membrane of parotid acinar cells triggered significant K+ current, indicating that a substantial amount of K+ is secreted into the lumen during stimulation. Nevertheless, the K+ content of the primary saliva is relatively low, suggesting that K+ might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na+-K+ pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K+ from and secretes Na+ to the lumen, which can partially supplement the paracellular Na+ pathway.
Assuntos
Células Acinares/metabolismo , Transporte Biológico/fisiologia , Transporte de Íons/fisiologia , Glândula Parótida/metabolismo , Potássio/metabolismo , Saliva/metabolismo , Sódio/metabolismo , Células Acinares/fisiologia , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Cloretos/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Glândula Parótida/fisiologia , Salivação/fisiologiaRESUMO
PURPOSE: Primary fluid secretion in secretory epithelia relies on the unidirectional transport of ions and water across a single cell layer. This mechanism requires the asymmetric apico-basal distribution of ion transporters and intracellular Ca2+ signaling. The primary aim of the present study was to verify the localization and the identity of Ca2+-dependent ion channels in acinar cells of the mouse lacrimal gland. METHODS: Whole-cell patch-clamp-electrophysiology, spatially localized flash-photolysis of Ca2+ and temporally resolved digital Ca2+-imaging was combined. Immunostaining of enzymatically isolated mouse lacrimal acinar cells was performed. RESULTS: We show that the Ca2+-dependent K+-conductance is paxilline-sensitive, abundant in the luminal, but negligible in the basal membrane; and co-localizes with Cl--conductance. These data suggest that both Cl- and K+ are secreted into the lumen and thus they account for the high luminal [Cl-] (â¼141â¯mM), but not for the relatively low [K+] (<17â¯mM) of the primary fluid. Accordingly, these results also imply that K+ must be reabsorbed from the primary tear fluid by the acinar cells. We hypothesized that apically-localized Na+-K+ pumps are responsible for K+-reabsorption. To test this possibility, immunostaining of lacrimal acinar cells was performed using anti-Na+-K+ ATP-ase antibody. We found positive fluorescence signal not only in the basal, but in the apical membrane of acinar cells too. CONCLUSIONS: Based on these results we propose a new primary fluid-secretion model in the lacrimal gland, in which the paracellular pathway of Na+ secretion is supplemented by a transcellular pathway driven by apical Na+-K+ pumps.