Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes Dev ; 26(15): 1714-28, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22855832

RESUMO

Trimethylation of histone H3 Lys 4 (H3K4me3) is a mark of active and poised promoters. The Set1 complex is responsible for most somatic H3K4me3 and contains the conserved subunit CxxC finger protein 1 (Cfp1), which binds to unmethylated CpGs and links H3K4me3 with CpG islands (CGIs). Here we report that Cfp1 plays unanticipated roles in organizing genome-wide H3K4me3 in embryonic stem cells. Cfp1 deficiency caused two contrasting phenotypes: drastic loss of H3K4me3 at expressed CGI-associated genes, with minimal consequences for transcription, and creation of "ectopic" H3K4me3 peaks at numerous regulatory regions. DNA binding by Cfp1 was dispensable for targeting H3K4me3 to active genes but was required to prevent ectopic H3K4me3 peaks. The presence of ectopic peaks at enhancers often coincided with increased expression of nearby genes. This suggests that CpG targeting prevents "leakage" of H3K4me3 to inappropriate chromatin compartments. Our results demonstrate that Cfp1 is a specificity factor that integrates multiple signals, including promoter CpG content and gene activity, to regulate genome-wide patterns of H3K4me3.


Assuntos
Ilhas de CpG/fisiologia , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular , Metilação de DNA , Lisina/metabolismo , Camundongos , Regiões Promotoras Genéticas , Transdução de Sinais , Transcrição Gênica/genética
2.
PLoS One ; 4(2): e4636, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19247482

RESUMO

BACKGROUND: Formaldehyde crosslinking is in widespread use as a biological fixative for microscopy and molecular biology. An assumption behind its use is that most biologically meaningful interactions are preserved by crosslinking, but the minimum length of time required for an interaction to become fixed has not been determined. METHODOLOGY: Using a unique series of mutations in the DNA binding protein MeCP2, we show that in vivo interactions lasting less than 5 seconds are invisible in the microscope after formaldehyde fixation, though they are obvious in live cells. The stark contrast between live cell and fixed cell images illustrates hitherto unsuspected limitations to the fixation process. We show that chromatin immunoprecipitation, a technique in widespread use that depends on formaldehyde crosslinking, also fails to capture these transient interactions. CONCLUSIONS/SIGNIFICANCE: Our findings for the first time establish a minimum temporal limitation to crosslink chemistry that has implications for many fields of research.


Assuntos
Formaldeído/metabolismo , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Formaldeído/análise , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA