Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 529(7584): 101-4, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26738596

RESUMO

Influenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans. Host range breaches are limited by incompatibilities between avian virus components and the human host. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells. Mutants of the heterotrimeric viral polymerase components, particularly PB2 protein, are selected during mammalian adaptation, but their mode of action is unknown. We show that a species-specific difference in host protein ANP32A accounts for the suboptimal function of avian virus polymerase in mammalian cells. Avian ANP32A possesses an additional 33 amino acids between the leucine-rich repeats and carboxy-terminal low-complexity acidic region domains. In mammalian cells, avian ANP32A rescued the suboptimal function of avian virus polymerase to levels similar to mammalian-adapted polymerase. Deletion of the avian-specific sequence from chicken ANP32A abrogated this activity, whereas its insertion into human ANP32A, or closely related ANP32B, supported avian virus polymerase function. Substitutions, such as PB2(E627K), were rapidly selected upon infection of humans with avian H5N1 or H7N9 influenza viruses, adapting the viral polymerase for the shorter mammalian ANP32A. Thus ANP32A represents an essential host partner co-opted to support influenza virus replication and is a candidate host target for novel antivirals.


Assuntos
Proteínas Aviárias/química , Proteínas Aviárias/metabolismo , Especificidade de Hospedeiro , Vírus da Influenza A/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Aviárias/deficiência , Linhagem Celular , Galinhas/virologia , Cricetinae , Cricetulus , Cães , Evolução Molecular , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Virus da Influenza A Subtipo H5N1/enzimologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas Nucleares , Proteínas de Ligação a RNA , RNA Polimerase Dependente de RNA/genética , Especificidade da Espécie , Transcrição Gênica , Proteínas Virais/genética , Replicação Viral
2.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321810

RESUMO

The Birnaviridae family, responsible for major economic losses to poultry and aquaculture, is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome that replicate in discrete cytoplasmic virus factories (VFs). Reassortment is common; however, the underlying mechanism remains unknown given that VFs may act as a barrier to genome mixing. In order to provide new information on VF trafficking during dsRNA virus coinfection, we rescued two recombinant infectious bursal disease viruses (IBDVs) of strain PBG98 containing either a split GFP11 or a tetracysteine (TC) tag fused to the VP1 polymerase (PBG98-VP1-GFP11 and PBG98-VP1-TC). DF-1 cells transfected with GFP1-10 prior to PBG98-VP1-GFP11 infection or stained with a biarsenical derivative of the red fluorophore resorufin (ReAsH) following PBG98-VP1-TC infection, had green or red foci in the cytoplasm, respectively, that colocalized with VP3 and dsRNA, consistent with VFs. The average number of VFs decreased from a mean of 60 to 5 per cell between 10 and 24 h postinfection (hpi) (P < 0.0001), while the average area increased from 1.24 to 45.01 µm2 (P < 0.0001), and live cell imaging revealed that the VFs were highly dynamic structures that coalesced in the cytoplasm. Small VFs moved faster than large (average 0.57 µm/s at 16 hpi compared to 0.22 µm/s at 22 hpi), and VF coalescence was dependent on an intact microtubule network and actin cytoskeleton. During coinfection with PBG98-VP1-GFP11 and PBG98-VP1-TC viruses, discrete VFs initially formed from each input virus that subsequently coalesced 10 to 16 hpi, and we speculate that Birnaviridae reassortment requires VF coalescence.IMPORTANCE Reassortment is common in viruses with segmented double-stranded RNA (dsRNA) genomes. However, these viruses typically replicate within discrete cytoplasmic virus factories (VFs) that may represent a barrier to genome mixing. We generated the first replication competent tagged reporter birnaviruses, infectious bursal disease viruses (IBDVs) containing a split GFP11 or tetracysteine (TC) tag and used the viruses to track the location and movement of IBDV VFs, in order to better understand the intracellular dynamics of VFs during a coinfection. Discrete VFs initially formed from each virus that subsequently coalesced from 10 h postinfection. We hypothesize that VF coalescence is required for the reassortment of the Birnaviridae This study provides new information that adds to our understanding of dsRNA virus VF trafficking.


Assuntos
Vírus da Doença Infecciosa da Bursa/genética , Vírus Reordenados/genética , Replicação Viral/genética , Animais , Linhagem Celular , Coinfecção/metabolismo , Citoplasma , Vírus de RNA/genética , Vírus Reordenados/metabolismo , Proteínas Estruturais Virais/genética
3.
Avian Pathol ; 48(2): 87-90, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30507248

RESUMO

Fowlpox virus is the type species of an extensive and poorly-defined group of viruses isolated from more than 200 species of birds, together comprising the avipoxvirus genus of the poxvirus family. Long known as a significant poultry pathogen, vaccines developed in the early and middle years of the twentieth century led to its effective eradication as a problem to commercial production in temperate climes in developed western countries (such that vaccination there is now far less common). Transmitted mechanically by biting insects, it remains problematic, causing significant losses to all forms of production (from backyard, through extensive to intensive commercial flocks), in tropical climes where control of biting insects is difficult. In these regions, vaccination (via intradermal or subcutaneous, and increasingly in ovo, routes) remains necessary. Although there is no evidence that more than a single serotype exists, there are poorly-described reports of outbreaks in vaccinated flocks. Whether this is due to inadequate vaccination or penetrance of novel variants remains unclear. Some such outbreaks have been associated with strains carrying endogenous, infectious proviral copies of the retrovirus reticuloendotheliosis virus (REV), which might represent a pathotypic (if not newly emerging) variant in the field. Until more is known about the phylogenetic structure of the avipoxvirus genus (by more widespread genome sequencing of isolates from different species of birds) it remains difficult to ascertain the risk of novel avipoxviruses emerging from wild birds (and/or by recombination/mutation) to infect farmed poultry.


Assuntos
Doenças das Aves/patologia , Vírus da Varíola das Aves Domésticas/imunologia , Varíola Aviária/patologia , Doenças das Aves Domésticas/patologia , Vacinação/veterinária , Animais , Doenças das Aves/prevenção & controle , Doenças das Aves/virologia , Aves , Varíola Aviária/prevenção & controle , Varíola Aviária/virologia , Vírus da Varíola das Aves Domésticas/genética , Vírus da Varíola das Aves Domésticas/patogenicidade , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Virulência
4.
J Biol Chem ; 292(22): 9010-9021, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28411240

RESUMO

Programmed cell death or apoptosis of infected host cells is an important defense mechanism in response to viral infections. This process is regulated by proapoptotic and prosurvival members of the B-cell lymphoma 2 (Bcl-2) protein family. To counter premature death of a virus-infected cell, poxviruses use a range of different molecular strategies including the mimicry of prosurvival Bcl-2 proteins. One such viral prosurvival protein is the fowlpox virus protein FPV039, which is a potent apoptosis inhibitor, but the precise molecular mechanism by which FPV039 inhibits apoptosis is unknown. To understand how fowlpox virus inhibits apoptosis, we examined FPV039 using isothermal titration calorimetry, small-angle X-ray scattering, and X-ray crystallography. Here, we report that the fowlpox virus prosurvival protein FPV039 promiscuously binds to cellular proapoptotic Bcl-2 and engages all major proapoptotic Bcl-2 proteins. Unlike other identified viral Bcl-2 proteins to date, FPV039 engaged with cellular proapoptotic Bcl-2 with affinities comparable with those of Bcl-2's endogenous cellular counterparts. Structural studies revealed that FPV039 adopts the conserved Bcl-2 fold observed in cellular prosurvival Bcl-2 proteins and closely mimics the structure of the prosurvival Bcl-2 family protein Mcl-1. Our findings suggest that FPV039 is a pan-Bcl-2 protein inhibitor that can engage all host BH3-only proteins, as well as Bcl-2-associated X, apoptosis regulator (Bax) and Bcl-2 antagonist/killer (Bak) proteins to inhibit premature apoptosis of an infected host cell. This work therefore provides a mechanistic platform to better understand FPV039-mediated apoptosis inhibition.


Assuntos
Proteínas Reguladoras de Apoptose/química , Vírus da Varíola das Aves Domésticas/química , Proteínas Virais/química , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas , Cristalografia por Raios X , Vírus da Varíola das Aves Domésticas/genética , Vírus da Varíola das Aves Domésticas/metabolismo , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Domínios Proteicos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
5.
J Gen Virol ; 98(12): 2918-2930, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29154745

RESUMO

Infectious bursal disease virus (IBDV) belongs to the family Birnaviridae and is economically important to the poultry industry worldwide. IBDV infects B cells in the bursa of Fabricius (BF), causing immunosuppression and morbidity in young chickens. In addition to strains that cause classical Gumboro disease, the so-called 'very virulent' (vv) strain, also in circulation, causes more severe disease and increased mortality. IBDV has traditionally been controlled through the use of live attenuated vaccines, with attenuation resulting from serial passage in non-lymphoid cells. However, the factors that contribute to the vv or attenuated phenotypes are poorly understood. In order to address this, we aimed to investigate host cell-IBDV interactions using a recently described chicken primary B-cell model, where chicken B cells are harvested from the BF and cultured ex vivo in the presence of chicken CD40L. We demonstrated that these cells could support the replication of IBDV when infected ex vivo in the laboratory. Furthermore, we evaluated the gene expression profiles of B cells infected with an attenuated strain (D78) and a very virulent strain (UK661) by microarray. We found that key genes involved in B-cell activation and signalling (TNFSF13B, CD72 and GRAP) were down-regulated following infection relative to mock, which we speculate could contribute to IBDV-mediated immunosuppression. Moreover, cells responded to infection by expressing antiviral type I IFNs and IFN-stimulated genes, but the induction was far less pronounced upon infection with UK661, which we speculate could contribute to its virulence.


Assuntos
Linfócitos B/virologia , Infecções por Birnaviridae/virologia , Galinhas/virologia , Expressão Gênica/genética , Vírus da Doença Infecciosa da Bursa/genética , Doenças das Aves Domésticas/virologia , Virulência/genética , Animais , Bolsa de Fabricius/virologia , Vacinas Atenuadas/imunologia
6.
Vet Res ; 47(1): 75, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27494935

RESUMO

Viruses that infect birds pose major threats-to the global supply of chicken, the major, universally-acceptable meat, and as zoonotic agents (e.g. avian influenza viruses H5N1 and H7N9). Controlling these viruses in birds as well as understanding their emergence into, and transmission amongst, humans will require considerable ingenuity and understanding of how different species defend themselves. The type I interferon-coordinated response constitutes the major antiviral innate defence. Although interferon was discovered in chicken cells, details of the response, particularly the identity of hundreds of stimulated genes, are far better described in mammals. Viruses induce interferon-stimulated genes but they also regulate the expression of many hundreds of cellular metabolic and structural genes to facilitate their replication. This study focusses on the potentially anti-viral genes by identifying those induced just by interferon in primary chick embryo fibroblasts. Three transcriptomic technologies were exploited: RNA-seq, a classical 3'-biased chicken microarray and a high density, "sense target", whole transcriptome chicken microarray, with each recognising 120-150 regulated genes (curated for duplication and incorrect assignment of some microarray probesets). Overall, the results are considered robust because 128 of the compiled, curated list of 193 regulated genes were detected by two, or more, of the technologies.


Assuntos
Galinhas/genética , Genes/efeitos dos fármacos , Interferon-alfa/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Animais , Embrião de Galinha , Galinhas/imunologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária
7.
J Virol ; 87(9): 5028-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23427151

RESUMO

Viruses must be able to resist host innate responses, especially the type I interferon (IFN) response. They do so by preventing the induction or activity of IFN and/or by resisting the antiviral effectors that it induces. Poxviruses are no exception, with many mechanisms identified whereby mammalian poxviruses, notably, vaccinia virus (VACV), but also cowpox and myxoma viruses, are able to evade host IFN responses. Similar mechanisms have not been described for avian poxviruses (avipoxviruses). Restricted for permissive replication to avian hosts, they have received less attention; moreover, the avian host responses are less well characterized. We show that the prototypic avipoxvirus, fowlpox virus (FWPV), is highly resistant to the antiviral effects of avian IFN. A gain-of-function genetic screen identified fpv014 to contribute to increased resistance to exogenous recombinant chicken alpha IFN (ChIFN1). fpv014 is a member of the large family of poxvirus (especially avipoxvirus) genes that encode proteins containing N-terminal ankyrin repeats (ANKs) and C-terminal F-box-like motifs. By binding the Skp1/cullin-1 complex, the F box in such proteins appears to target ligands bound by the ANKs for ubiquitination. Mass spectrometry and immunoblotting demonstrated that tandem affinity-purified, tagged fpv014 was complexed with chicken cullin-1 and Skp1. Prior infection with an fpv014-knockout mutant of FWPV still blocked transfected poly(I·C)-mediated induction of the beta IFN (ChIFN2) promoter as effectively as parental FWPV, but the mutant was more sensitive to exogenous ChIFN1. Therefore, unlike the related protein fpv012, fpv014 does not contribute to the FWPV block to induction of ChIFN2 but does confer resistance to an established antiviral state.


Assuntos
Repetição de Anquirina , Vírus da Varíola das Aves Domésticas/imunologia , Varíola Aviária/imunologia , Interferon-alfa/imunologia , Doenças das Aves Domésticas/imunologia , Proteínas Virais/química , Proteínas Virais/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Embrião de Galinha , Galinhas , Varíola Aviária/genética , Varíola Aviária/virologia , Vírus da Varíola das Aves Domésticas/química , Vírus da Varíola das Aves Domésticas/genética , Biblioteca Gênica , Interferon-alfa/genética , Dados de Sequência Molecular , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Estrutura Terciária de Proteína , Proteínas Virais/genética
8.
J Virol ; 87(9): 5041-52, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23427153

RESUMO

Mammalian poxviruses, including vaccinia virus (VACV), have evolved multiple mechanisms to evade the host type I interferon (IFN) responses at different levels, with viral proteins targeting IFN induction, signaling, and antiviral effector functions. Avian poxviruses (avipoxviruses), which have been developed as recombinant vaccine vectors for permissive (i.e., poultry) and nonpermissive (i.e., mammals, including humans) species, encode no obvious equivalents of any of these proteins. We show that fowlpox virus (FWPV) fails to induce chicken beta IFN (ChIFN2) and is able to block its induction by transfected poly(I·C), an analog of cytoplasmic double-stranded RNA (dsRNA). A broad-scale loss-of-function genetic screen was used to find FWPV-encoded modulators of poly(I·C)-mediated ChIFN2 induction. It identified fpv012, a member of a family of poxvirus genes highly expanded in the avipoxviruses (31 in FWPV; 51 in canarypox virus [CNPV], representing 15% of the total gene complement), encoding proteins containing N-terminal ankyrin repeats (ANKs) and C-terminal F-box-like motifs. Under ectopic expression, the first ANK of fpv012 is dispensable for inhibitory activity and the CNPV ortholog is also able to inhibit induction of ChIFN2. FWPV defective in fpv012 replicates well in culture and barely induces ChIFN2 during infection, suggesting that other factors are involved in blocking IFN induction and resisting the antiviral effectors. Nevertheless, unlike parental and revertant viruses, the mutants induce moderate levels of expression of interferon-stimulated genes (ISGs), suggesting either that there is sufficient ChIFN2 expression to partially induce the ISGs or the involvement of alternative, IFN-independent pathways that are also normally blocked by fpv012.


Assuntos
Repetição de Anquirina , Vírus da Varíola das Aves Domésticas/imunologia , Varíola Aviária/imunologia , Interferon beta/imunologia , Doenças das Aves Domésticas/imunologia , Proteínas Virais/química , Proteínas Virais/imunologia , Animais , Embrião de Galinha , Galinhas , Varíola Aviária/genética , Varíola Aviária/virologia , Vírus da Varíola das Aves Domésticas/química , Vírus da Varíola das Aves Domésticas/genética , Biblioteca Gênica , Interferon beta/genética , Mutação , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Estrutura Terciária de Proteína , Proteínas Virais/genética
9.
J Virol ; 87(9): 4938-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23408635

RESUMO

Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.


Assuntos
Avipoxvirus/classificação , Avipoxvirus/isolamento & purificação , Doenças das Aves/virologia , Filogenia , Infecções por Poxviridae/veterinária , Animais , Avipoxvirus/genética , Avipoxvirus/fisiologia , Aves , Especificidade de Hospedeiro , Dados de Sequência Molecular , Infecções por Poxviridae/virologia , Recombinação Genética
10.
Nat Commun ; 14(1): 6136, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816720

RESUMO

Chickens genetically resistant to avian influenza could prevent future outbreaks. In chickens, influenza A virus (IAV) relies on host protein ANP32A. Here we use CRISPR/Cas9 to generate homozygous gene edited (GE) chickens containing two ANP32A amino acid substitutions that prevent viral polymerase interaction. After IAV challenge, 9/10 edited chickens remain uninfected. Challenge with a higher dose, however, led to breakthrough infections. Breakthrough IAV virus contained IAV polymerase gene mutations that conferred adaptation to the edited chicken ANP32A. Unexpectedly, this virus also replicated in chicken embryos edited to remove the entire ANP32A gene and instead co-opted alternative ANP32 protein family members, chicken ANP32B and ANP32E. Additional genome editing for removal of ANP32B and ANP32E eliminated all viral growth in chicken cells. Our data illustrate a first proof of concept step to generate IAV-resistant chickens and show that multiple genetic modifications will be required to curtail viral escape.


Assuntos
Vírus da Influenza A , Influenza Aviária , Embrião de Galinha , Animais , Influenza Aviária/genética , Edição de Genes , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Galinhas/genética , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo
11.
Genes Chromosomes Cancer ; 50(4): 275-83, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21319262

RESUMO

Using a custom CGH-like oligonucleotide array to measure the global microsatellite content in the genomes of 72 cancer, cancer-free, and high risk patient and cell line samples (56 germline DNA and 16 in tumor or tumor cell line DNA) we found a unique, reproducible, and statistically significant pattern of 18 motif-specific microsatellite families (out of 962 possible 1-6 mer repeats) in breast cancer patient germline and tumor DNA, but not in germline DNA of cancer-free volunteer controls or in breast cancer patients with BRCA1/2 mutations. These high-similarity A/T rich repetitive motifs were also more pronounced in the germlines and tumors of colon cancer tumor patients (3/6 samples) and microsatellite unstable colon cancer cell lines; however, germline DNA of sporadic breast cancer patients exhibited the largest global content shift for those motifs with extreme AT/GC ratios. These results indicate that global microsatellite variability is complex, suggest the existence of a previously unknown genomic destabilization mechanism in breast cancer patients' germline DNA, and warrant further testing of such microsatellite variability as a predictor of future breast cancer development.


Assuntos
Sequência Rica em At , Neoplasias da Mama/genética , Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , DNA de Neoplasias/genética , Feminino , Genes BRCA1 , Genes BRCA2 , Variação Genética , Humanos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos
12.
Am J Hum Genet ; 82(2): 344-51, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18252215

RESUMO

In animal models, kidney formation is known to be controlled by the proteins RET, GDNF, and GFRA1; however, no human studies to date have shown an association between abnormal kidney development and mutation of these genes. We hypothesized that stillborn fetuses with congenital renal agenesis or severe dysplasia would possess mutations in RET, GDNF, or GFRA1. We assayed for mutations in these genes in 33 stillborn fetuses that had bilateral or unilateral renal agenesis (29 subjects) or severe congenital renal dysplasia (4 subjects). Mutations in RET were found in 7 of 19 fetuses with bilateral renal agenesis (37%) and 2 of 10 fetuses (20%) with unilateral agenesis. In two fetuses, there were two different RET mutations found, and a total of ten different sequence variations were identified. We also investigated whether these mutations affected RET activation; in each case, RET phosphorylation was either absent or constitutively activated. A GNDF mutation was identified in only one fetus with unilateral agenesis; this subject also had two RET mutations. No GFRA1 mutations were seen in any fetuses. These data suggest that in humans, mutations in RET and GDNF may contribute significantly to abnormal kidney development.


Assuntos
Nefropatias/genética , Rim/anormalidades , Mutação/genética , Proteínas Proto-Oncogênicas c-ret/genética , Sequência de Bases , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Plasmídeos/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Análise de Sequência de DNA
13.
J Virol ; 84(24): 12886-94, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20943972

RESUMO

Using two-photon-induced fluorescence lifetime imaging microscopy, we corroborate an interaction (previously demonstrated by yeast two-hybrid domain analysis) of full-length vaccinia virus (VACV; an orthopoxvirus) A36 protein with the cellular microtubule motor protein kinesin. Quenching of enhanced green fluorescent protein (EGFP), fused to the C terminus of VACV A36, by monomeric red fluorescent protein (mDsRed), fused to the tetratricopeptide repeat (TPR) domain of kinesin, was observed in live chicken embryo fibroblasts infected with either modified vaccinia virus Ankara (MVA) or wild-type fowlpox virus (FWPV; an avipoxvirus), and the excited-state fluorescence lifetime of EGFP was reduced from 2.5 ± 0.1 ns to 2.1 ± 0.1 ns due to resonance energy transfer to mDsRed. FWPV does not encode an equivalent of intracellular enveloped virion surface protein A36, yet it is likely that this virus too must interact with kinesin to facilitate intracellular virion transport. To investigate possible interactions between innate FWPV proteins and kinesin, recombinant FWPVs expressing EGFP fused to the N termini of FWPV structural proteins Fpv140, Fpv168, Fpv191, and Fpv198 (equivalent to VACV H3, A4, p4c, and A34, respectively) were generated. EGFP fusions of intracellular mature virion (IMV) surface protein Fpv140 and type II membrane protein Fpv198 were quenched by mDsRed-TPR in recombinant FWPV-infected cells, indicating that these virion proteins are found within 10 nm of mDsRed-TPR. In contrast, and as expected, EGFP fusions of the IMV core protein Fpv168 did not show any quenching. Interestingly, the p4c-like protein Fpv191, which demonstrates late association with preassembled IMV, also did not show any quenching.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Infecções por Poxviridae/metabolismo , Infecções por Poxviridae/virologia , Proteínas Estruturais Virais/metabolismo , Vírion/metabolismo , Animais , Embrião de Galinha , Fibroblastos/virologia , Transferência Ressonante de Energia de Fluorescência , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinesinas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Fótons , Plasmídeos , Poxviridae/patogenicidade , Infecções por Poxviridae/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/genética , Proteína Vermelha Fluorescente
14.
Bioinformatics ; 26(11): 1453-7, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20472545

RESUMO

MOTIVATION: Document similarity metrics such as PubMed's 'Find related articles' feature, which have been primarily used to identify studies with similar topics, can now also be used to detect duplicated or potentially plagiarized papers within literature reference databases. However, the CPU-intensive nature of document comparison has limited MEDLINE text similarity studies to the comparison of abstracts, which constitute only a small fraction of a publication's total text. Extending searches to include text archived by online search engines would drastically increase comparison ability. For large-scale studies, submitting short phrases encased in direct quotes to search engines for exact matches would be optimal for both individual queries and programmatic interfaces. We have derived a method of analyzing statistically improbable phrases (SIPs) for assistance in identifying duplicate content. RESULTS: When applied to MEDLINE citations, this method substantially improves upon previous algorithms in the detection of duplication citations, yielding a precision and recall of 78.9% (versus 50.3% for eTBLAST) and 99.6% (versus 99.8% for eTBLAST), respectively. AVAILABILITY: Similar citations identified by this work are freely accessible in the Déjà vu database, under the SIP discovery method category at http://dejavu.vbi.vt.edu/dejavu/.


Assuntos
Indexação e Redação de Resumos/métodos , Publicações Duplicadas como Assunto , Bases de Dados Factuais , MEDLINE , Plágio , PubMed , Ferramenta de Busca , Estados Unidos
15.
Virol J ; 8: 429, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21899739

RESUMO

BACKGROUND: There is renewed interest in the development of poxvirus vector-based HIV vaccines due to the protective effect observed with repeated recombinant canarypox priming with gp120 boosting in the recent Thai placebo-controlled trial. This study sought to investigate whether a heterologous prime-boost-boost vaccine regimen in Chinese cynomolgus macaques with a DNA vaccine and recombinant poxviral vectors expressing HIV virus-like particles bearing envelopes derived from the most prevalent clades circulating in sub-Saharan Africa, focused the antibody response to shared neutralising epitopes. METHODS: Three Chinese cynomolgus macaques were immunised via intramuscular injections using a regimen composed of a prime with two DNA vaccines expressing clade A Env/clade B Gag followed by boosting with recombinant fowlpox virus expressing HIV-1 clade D Gag, Env and cholera toxin B subunit followed by the final boost with recombinant modified vaccinia virus Ankara expressing HIV-1 clade C Env, Gag and human complement protein C3d. We measured the macaque serum antibody responses by ELISA, enumerated T cell responses by IFN-γ ELISpot and assessed seroneutralisation of HIV-1 using the TZM-bl ß-galactosidase assay with primary isolates of HIV-1. RESULTS: This study shows that large and complex synthetic DNA sequences can be successfully cloned in a single step into two poxvirus vectors: MVA and FPV and the recombinant poxviruses could be grown to high titres. The vaccine candidates showed appropriate expression of recombinant proteins with the formation of authentic HIV virus-like particles seen on transmission electron microscopy. In addition the b12 epitope was shown to be held in common by the vaccine candidates using confocal immunofluorescent microscopy. The vaccine candidates were safely administered to Chinese cynomolgus macaques which elicited modest T cell responses at the end of the study but only one out of the three macaques elicited an HIV-specific antibody response. However, the antibodies did not neutralise primary isolates of HIV-1 or the V3-sensitive isolate SF162 using the TZM-bl ß-galactosidase assay. CONCLUSIONS: MVA and FP9 are ideal replication-deficient viral vectors for HIV-1 vaccines due to their excellent safety profile for use in humans. This study shows this novel prime-boost-boost regimen was poorly immunogenic in Chinese cynomolgus macaques.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Anticorpos Anti-HIV/biossíntese , Infecções por HIV/prevenção & controle , HIV-1 , Imunização Secundária , Macaca fascicularis/imunologia , Vacinação , Vacinas contra a AIDS/química , Vacinas contra a AIDS/genética , Animais , Antígenos Heterófilos/administração & dosagem , DNA , Vírus da Varíola das Aves Domésticas/química , Vírus da Varíola das Aves Domésticas/genética , Vírus da Varíola das Aves Domésticas/imunologia , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/química , Vetores Genéticos/imunologia , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/química , HIV-1/genética , HIV-1/imunologia , Humanos , Injeções Intramusculares , Macaca fascicularis/virologia , Masculino , Vírus Reordenados/química , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/química , Vacinas de DNA/genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/genética , Vaccinia virus/química , Vaccinia virus/genética , Vaccinia virus/imunologia , beta-Galactosidase/análise , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
16.
Parasitol Res ; 109(3): 857-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21400116

RESUMO

Investigators using light microscopy have identified the protozoan parasite Entamoeba gingivalis from diseased gingival pockets for nearly 100 years. The objective of the present investigation was to develop a molecular biology approach for determining the presence of E. gingivalis in both diseased gingival pockets and healthy gingival sites. For this, a previously developed conventional polymerase chain reaction (PCR) was evaluated and a real-time polymerase chain reaction assay was developed. Paper points were inserted into the base of the sulcus of both diseased gingival pockets and healthy gingival sites. DNA was extracted using the QIAamp DNA mini kit, and subsequently analyzed using conventional and real-time PCR analysis. A previously described primer set specific for the small subunit ribosomal RNA gene (SSU rDNA) of E. gingivalis was used for the conventional PCR. For the real-time PCR, a primer set was designed to amplify a 135-bp fragment inside the SSU rDNA of E. gingivalis. A conventional PCR assay detected E. gingivalis in 27% of diseased gingival pockets. The real-time PCR using a different primer set detected protozoa in 69% of diseased pocket sites. Thus, the latter technique proved more sensitive for detection of E. gingivalis. No E. gingivalis were detected in any of the healthy gingival pocket sites using either type of PCR assay. Results support a concept that the presence of E. gingivalis is associated only with diseased gingival pocket sites. The newly described methodology may also serve to provide a novel eukaryotic cell marker of disease status in gingival pockets.


Assuntos
Entamoeba/isolamento & purificação , Entamebíase/diagnóstico , Bolsa Gengival/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Parasitologia/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Primers do DNA/genética , DNA de Protozoário/genética , DNA Ribossômico/genética , Entamoeba/genética , Genes de RNAr , Humanos , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade
17.
J Allergy Clin Immunol ; 126(4): 814-820.e8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20832849

RESUMO

BACKGROUND: The induction of tolerance toward third-party solid organ grafts with allogeneic thymus tissue transplantation has not been previously demonstrated in human subjects. OBJECTIVE: Infants with complete DiGeorge anomaly (having neither thymus nor parathyroid function) were studied for conditions and mechanisms required for the development of tolerance to third-party solid organ tissues. METHODS: Four infants who met the criteria received parental parathyroid with allogeneic thymus transplantation and were studied. RESULTS: Two of 3 survivors showed function of both grafts but subsequently lost parathyroid function. They demonstrated alloreactivity against the parathyroid donor in mixed lymphocyte cultures. For these 2 recipients, parathyroid donor HLA class II alleles were mismatched with the recipient and thymus. MHC class II tetramers confirmed the presence of recipient CD4(+) T cells with specificity toward a mismatched parathyroid donor class II allele. The third survivor has persistent graft function and lacks alloreactivity toward the parathyroid donor. All parathyroid donor class II alleles were shared with either the recipient or the thymus graft, with minor differences between the parathyroid (HLA-DRB1∗1104) and thymus (HLA-DRB1∗1101). Tetramer analyses detected recipient T cells specific for the parathyroid HLA-DRB1∗1104 allele. Alloreactivity toward the parathyroid donor was restored with low doses of IL-2. CONCLUSION: Tolerance toward parathyroid grafts in combined parental parathyroid and allogeneic thymus transplantation requires matching of thymus tissue to parathyroid HLA class II alleles to promote negative selection and suppression of recipient T cells that have alloreactivity toward the parathyroid grafts. This matching strategy may be applied toward tolerance induction in future combined thymus and solid organ transplantation efforts.


Assuntos
Síndrome de DiGeorge/terapia , Glândulas Paratireoides/transplante , Timo/transplante , Tolerância ao Transplante/imunologia , Transplante Homólogo/imunologia , Adulto , Sobrevivência de Enxerto/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Teste de Histocompatibilidade , Humanos , Lactente , Teste de Cultura Mista de Linfócitos , Glândulas Paratireoides/imunologia , Pais , Timo/imunologia , Resultado do Tratamento
18.
Viruses ; 13(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069965

RESUMO

In order to better understand differences in the outcome of infectious bursal disease virus (IBDV) infection, we inoculated a very virulent (vv) strain into White Leghorn chickens of inbred line W that was previously reported to experience over 24% flock mortality, and three inbred lines (15I, C.B4 and 0) that were previously reported to display no mortality. Within each experimental group, some individuals experienced more severe disease than others but line 15I birds experienced milder disease based on average clinical scores, percentage of birds with gross pathology, average bursal lesion scores and average peak bursal virus titre. RNA-Seq analysis revealed that more severe disease in line W was associated with significant up-regulation of pathways involved in inflammation, cytoskeletal regulation by Rho GTPases, nicotinic acetylcholine receptor signaling, and Wnt signaling in the bursa compared to line 15I. Primary bursal cell populations isolated from uninfected line W birds contained a significantly greater percentage of KUL01+ macrophages than cells isolated from line 15I birds (p < 0.01) and, when stimulated ex vivo with LPS, showed more rapid up-regulation of pro-inflammatory gene expression than those from line 15I birds. We hypothesize that a more rapid induction of pro-inflammatory cytokine responses in bursal cells following IBDV infection leads to more severe disease in line W birds than in line 15I.


Assuntos
Perfilação da Expressão Gênica , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/etiologia , Transcriptoma , Animais , Galinhas , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Endogamia , Índice de Gravidade de Doença
19.
Artigo em Inglês | MEDLINE | ID: mdl-32582573

RESUMO

IBDV is economically important to the poultry industry. Very virulent (vv) strains cause higher mortality rates than other strains for reasons that remain poorly understood. In order to provide more information on IBDV disease outcome, groups of chickens (n = 18) were inoculated with the vv strain, UK661, or the classical strain, F52/70. Birds infected with UK661 had a lower survival rate (50%) compared to F52/70 (80%). There was no difference in peak viral replication in the bursa of Fabricius (BF), but the expression of chicken IFNα, IFNß, MX1, and IL-8 was significantly lower in the BF of birds infected with UK661 compared to F52/70 (p < 0.05) as quantified by RTqPCR, and this trend was also observed in DT40 cells infected with UK661 or F52/70 (p < 0.05). The induction of expression of type I IFN in DF-1 cells stimulated with polyI:C (measured by an IFN-ß luciferase reporter assay) was significantly reduced in cells expressing ectopic VP4 from UK661 (p < 0.05), but was higher in cells expressing ectopic VP4 from F52/70. Cells infected with a chimeric recombinant IBDV carrying the UK661-VP4 gene in the background of PBG98, an attenuated vaccine strain that induces high levels of innate responses (PBG98-VP4UK661) also showed a reduced level of IFNα and IL-8 compared to cells infected with a chimeric virus carrying the F52/70-VP4 gene (PBG98-VP4F52/70) (p < 0.01), and birds infected with PBG98-VP4UK661 also had a reduced expression of IFNα in the BF compared to birds infected with PBG98-VP4F52/70 (p < 0.05). Taken together, these data demonstrate that UK661 induced the expression of lower levels of anti-viral type I IFN and proinflammatory genes than the classical strain in vitro and in vivo and this was, in part, due to strain-dependent differences in the VP4 protein.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Antivirais , Infecções por Birnaviridae/veterinária , Galinhas , Regulação para Baixo
20.
Front Immunol ; 11: 613079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633733

RESUMO

The anti-viral immune response is dependent on the ability of infected cells to sense foreign nucleic acids. In multiple species, the pattern recognition receptor (PRR) cyclic GMP-AMP synthase (cGAS) senses viral DNA as an essential component of the innate response. cGAS initiates a range of signaling outputs that are dependent on generation of the second messenger cGAMP that binds to the adaptor protein stimulator of interferon genes (STING). Here we show that in chicken macrophages, the cGAS/STING pathway is essential not only for the production of type-I interferons in response to intracellular DNA stimulation, but also for regulation of macrophage effector functions including the expression of MHC-II and co-stimulatory molecules. In the context of fowlpox, an avian DNA virus infection, the cGAS/STING pathway was found to be responsible for type-I interferon production and MHC-II transcription. The sensing of fowlpox virus DNA is therefore essential for mounting an anti-viral response in chicken cells and for regulation of a specific set of macrophage effector functions.


Assuntos
Galinhas/metabolismo , Galinhas/virologia , Varíola Aviária/metabolismo , Macrófagos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Animais , Linhagem Celular , Vírus de DNA/genética , DNA Viral/genética , Vírus da Varíola das Aves Domésticas/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/virologia , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA