Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2306653, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534177

RESUMO

Increasing densities of reaction sites for gaseous reactants in solid oxide electrochemical reactors (SOERs), is a key strategy for achieving enhanced performance in either fuel cell or electrolysis modes. Fabrication of 3D structured components in SOERs can enhance those densities of reaction sites, which is achieved by 3D inkjet printing with high reproducibility, having developed inks with appropriate properties. First, the effects of pillar geometries on SOER performances are predicted through numerical simulations, enabling subsequent 3D printing to focus on the more effective geometries. Herein, the study reports the results of experimental validation of those predictions by evaluating the electrochemical performances of cells with various heights of 3D inkjet-printed Ni(O)- yttria stabilized zirconia (YSZ) pillars and YSZ pillars. Those measurements prove that increasing pillar heights generally increases SOER peak power densities in fuel cell mode and increased current densities at the thermoneutral potential (1.285 V) in steam electrolysis mode, as predicted by simulations. With increasing pillar heights, more limitations in performance enhancement are found with YSZ electrolyte pillars than with Ni-YSZ pillars, again as predicted by simulations. The subsequent microstructural analysis of Ni-YSZ pillars proves the suitability of the Ni(O)-YSZ composite particle ink formulation and the reliability of 3D printing.

2.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37352420

RESUMO

Understanding the charge transfer processes at solid oxide fuel cell (SOFC) electrodes is critical to designing more efficient and robust materials. Activation losses at SOFC electrodes have been widely attributed to the ambipolar migration of charges at the mixed ionic-electronic conductor-gas interface. Empirical Butler-Volmer kinetics based on the transition state theory is often used to model the current-voltage relationship, where charged particles transfer classically over an energy barrier. However, the hydrogen oxidation/water electrolysis reaction H2(g) + O2- ⇌ H2O(g) + 2e- must be modeled through concerted electron and proton tunneling events, where we unify the theory of the electrostatic surface potential with proton-coupled electron transfer kinetics. We derive a framework for the reaction rate that depends on the electrostatic surface potential, adsorbate dipole moment, the electronic structure of the electron donor/acceptor, and vibronic states of the hydrogen species. This theory was used to study the current-voltage characteristics of the Ni/gadolinium-doped ceria electrode in H2/H2O(g), where we find excellent validation of this novel model. These results yield the first reported quantification of the solvent reorganization energy for an SOFC material and suggest that the three-phase boundary mechanism is the dominant pathway for charge transfer at cermet electrodes.


Assuntos
Óxidos , Prótons , Óxidos/química , Elétrons , Hidrogênio/química , Eletrodos
3.
Nano Lett ; 22(18): 7515-7521, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36067488

RESUMO

Activation losses at solid oxide fuel cell (SOFC) electrodes have been widely attributed to charge transfer at the electrode surface. The electrostatic nature of electrode-gas interactions allows us to study these phenomena by simulating an electric field across the electrode-gas interface, where we are able to describe the activation overpotential using density functional theory (DFT). The electrostatic responses to the electric field are used to approximate the behavior of an electrode under electrical bias and have found a correlation with experimental data for three different reduction reactions at mixed ionic-electronic conducting (MIEC) electrode surfaces (H2O and CO2 on CeO2; O2 on LaFeO3). In this work, we demonstrate the importance of decoupled ion-electron transfer and charged adsorbates on the performance of electrodes under nonequilibrium conditions. Finally, our findings on MIEC-gas interactions have potential implications in the fields of energy storage and catalysis.

4.
Small ; 18(43): e2107020, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35182013

RESUMO

Exsolution of stable metallic nanoparticles for use as efficient electrocatalysts has been of increasing interest for a range of energy technologies. Typically, exsolved nanoparticles show higher thermal and coarsening stability compared to conventionally deposited catalysts. Here, A-site deficient double perovskite oxides, La2- x NiRuO6- δ (x = 0.1 and 0.15), are designed and subjected to low-temperature reduction leading to exsolution. The reduced double perovskite materials are shown to exsolve nanoparticles of 2-6 nm diameter during the reduction in the low-temperature range of 350-450 °C. The nanoparticle sizes are found to increase after reduction at the higher temperature (450 °C), suggesting diffusion-limited particle growth. Interestingly, both nickel and ruthenium are co-exsolved during the reduction process. The formation of bimetallic nanoparticles at such low temperatures is rare. From the in situ impedance spectroscopy measurements of the double perovskite electrode layers, the onset of the exsolution process is found to be within the first few minutes of the reduction reaction. In addition, the area-specific resistance of the electrode layers is found to decrease by 90% from 291 to 29 Ω cm2 , suggesting encouraging prospects for these low-temperature rapidly exsolved Ni/Ru alloy nanoparticles in a range of catalytic applications.

5.
Phys Chem Chem Phys ; 23(27): 14569-14579, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-33988196

RESUMO

The local activation overpotential describes the electrostatic potential shift away from equilibrium at an electrode/electrolyte interface. This electrostatic potential is not entirely satisfactory for describing the reaction kinetics of a mixed ionic-electronic conducting (MIEC) solid-oxide cell (SOC) electrode where charge transfer occurs at the electrode-gas interface. Using the theory of the electrostatic potential at the MIEC-gas interface as an electrochemical driving force, charge transfer at the ceria-gas interface has been modelled based on the intrinsic dipole potential of the adsorbate. This model gives a physically meaningful reason for the enhancement in electrochemical activity of a MIEC electrode as the steam and hydrogen pressure is increased in both fuel cell and electrolysis modes. This model was validated against operando XPS data from previous literature to accurately predict the outer work function shift of thin film Sm0.2Ce0.8O1.9 in a H2/H2O atmosphere as a function of overpotential.

6.
Phys Chem Chem Phys ; 21(24): 13194-13206, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31173017

RESUMO

For the mechanisms by which the oxygen gets incorporated in a dual-phase composite system, three hypotheses, i.e. cation inter-diffusion, spillover type and self-cleaning of the perovskite-structured phase, have been provided in the literature. However, experimentally a consensus on the most likely mechanism is yet to be reached. In this work, a specially fused sample of the lanthanum strontium chromium ferrite (LSCrF)-scandia/ceria-stabilised zirconia (ScCeSZ) dual-phase material was investigated. Among the three potential mechanisms, no obvious cation inter-diffusion was firstly observed. A cleaner surface of the ScCeSZ phase was confirmed in the fused sample than in the isolated ScCeSZ single-phase sample while impurity layers were clearly observed on the LSCrF surface, suggesting the cleaning effect from the perovskite. However, more evidence implies that the cleaning effect is not the only reason for the synergistic effects between these two phases. Observations via SIMS analysis lend strong support to the 'spillover-type' mechanism as the oxygen isotopic fraction on the surface of the ScCeSZ increased compared to the isolated single-phase and as the distance to the heterojunction increases, the oxygen isotopic fraction decreases. Moreover, oxygen depleted layers were clearly seen on the top layers of the LSCrF surface which may be associated with the higher oxygen diffusivity in the surface/sub-surface layers, oxygen grain boundary fast diffusion and the impurities on the perovskite phase. For this sample, a combination of 'spillover' and 'self-cleaning' type mechanisms is suggested to be the potential possibility while the contribution from the cation inter-diffusion for this specific sample is proven to be low.

7.
Phys Chem Chem Phys ; 20(27): 18279-18290, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29957820

RESUMO

Lanthanum strontium chromite ferrite ((La0.8Sr0.2)0.95CrxFe1-xO3-δ, LSCrF) pellets with 5% A-site deficiency were fabricated and the electrical conductivity and oxygen diffusion behaviour with different Cr substitution levels (x = 0.3, 0.5 and 0.7) were investigated. As the Cr content increased, the electrical conductivity increased and then a maximum value was achieved at x = 0.7. In the oxygen diffusion studies, all the measured materials present good surface exchange rates (>9 × 10-8 cm s-1 at 900 °C) while the bulk diffusivity of the investigated materials decreased as the Cr substitution level increased: at 900 °C the oxygen diffusion coefficients of the LSCrF materials (x = 0.3, 0.5 and 0.7) are 1.1 × 10-10 cm2 s-1, 3.7 × 10-12 cm2 s-1 and 8.6 × 10-13 cm2 s-1, respectively. Oxygen diffusion in the perovskite materials (LSCrF) is shown to be bulk diffusion limited and it was found that analysis on this type of material using the line scan mode in Time-of-Flight Secondary Ion Mass Spectrometry may result in significant underestimation of the surface exchange coefficient due to the oxygen saturation, while the depth profile mode provides more reliable results but the obtained surface exchange coefficients may also only reach a lower limit. Moreover, fast grain boundary diffusion behaviour was observed in the LSCrF (x = 0.7) material and the Le Claire, and Chung and Wuensch approximations were applied to analyse the oxygen diffusion profiles. For this material, the two approximations provided similar results for the grain boundary product (Dgbδ) and under the assumption that the width of a grain boundary is on the nanometre scale, the oxygen diffusion coefficient of the grain boundaries was about 3-4 orders of magnitude higher than that of the bulk at temperatures ≤900 °C.

8.
Phys Chem Chem Phys ; 19(22): 14319-14336, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28537623

RESUMO

Enhanced conductivity in YSZ films has been of substantial interest over the last decade. In this paper we examine the effects of substrate lattice mismatch and film thickness on the strain in YSZ films and the resultant effect on the conductivity. 8 mol% YSZ films have been grown on MgO, Al2O3, LAO and NGO substrates, thereby controlling the lattice mismatch at the film/substrate interface. The thickness of the films was varied to probe the interfacial contribution to the transport properties, as measured by impedance spectroscopy and tracer diffusion. No enhancement in the transport properties of any of the films was found over single crystal values, and instead the effects of lattice strain were found to be minimal. The interfaces of all films were more resistive due to a heterogeneous distribution of grain boundaries, and no evidence for enhanced transport down dislocations was found.

9.
J Am Chem Soc ; 138(4): 1273-9, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26771687

RESUMO

CeNbO4.25 is reported to exhibit fast oxygen ion diffusion at moderate temperatures, making this the prototype of a new class of ion conductor with applications in a range of energy generation and storage devices. To date, the mechanism by which this ion transport is achieved has remained obscure, in part due to the long-range commensurately modulated structural motif. Here we show that CeNbO4.25 forms with a unit cell ∼12 times larger than the stoichiometric tetragonal parent phase of CeNbO4 as a result of the helical ordering of Ce(3+) and Ce(4+) ions along z. Interstitial oxygen ion incorporation leads to a cooperative displacement of the surrounding oxygen species, creating interlayer "NbO6" connectivity by extending the oxygen coordination number to 7 and 8. Molecular dynamic simulations suggest that fast ion migration occurs predominantly within the xz plane. It is concluded that the oxide ion diffuses anisotropically, with the major migration mechanism being intralayer; however, when obstructed, oxygen can readily move to an adjacent layer along y via alternate lower energy barrier pathways.

10.
Am J Emerg Med ; 32(10): 1195-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25149599

RESUMO

OBJECTIVE: Antibiotic-associated diarrhea (AAD) and Clostridium difficile infection (CDI) are well-known outcomes from antibiotic administration. Because emergency department (ED) visits frequently result in antibiotic use, we evaluated the frequency of AAD/CDI in adults treated and discharged home with new prescriptions for antibiotics to identify risk factors for acquiring AAD/CDI. METHODS: This prospective multicenter cohort study enrolled adult patients who received antibiotics in the ED and were discharged with a new prescription for antibiotics. Antibiotic-associated diarrhea was defined as 3 or more loose stools for 2 days or more within 30 days of starting the antibiotic. C difficile infection was defined by the detection of toxin A or B within this same period. We used multivariate logistic regression to assess predictors of developing AAD. RESULTS: We enrolled and followed 247 patients; 45 (18%) developed AAD, and 2 (1%) developed CDI. Patients who received intravenous (IV) antibiotics in the ED were more likely to develop AAD/CDI than patients who did not: 25.7% (95% confidence interval [CI], 17.4-34.0) vs 12.3% (95% CI, 6.8-17.9). Intravenous antibiotics had adjusted odds ratio of 2.73 (95% CI, 1.38-5.43), and Hispanic ethnicity had adjusted odds ratio of 3.04 (95% CI, 1.40-6.58). Both patients with CDI had received IV doses of broad-spectrum antibiotics. CONCLUSION: Intravenous antibiotic therapy administered to ED patients before discharge was associated with higher rates of AAD and with 2 cases of CDI. Care should be taken when deciding to use broad-spectrum IV antibiotics to treat ED patients before discharge home.


Assuntos
Administração Intravenosa/estatística & dados numéricos , Antibacterianos/efeitos adversos , Diarreia/epidemiologia , Serviço Hospitalar de Emergência , Enterocolite Pseudomembranosa/epidemiologia , Administração Oral , Adulto , Negro ou Afro-Americano/estatística & dados numéricos , Estudos de Coortes , Diarreia/induzido quimicamente , Diarreia/etnologia , Enterocolite Pseudomembranosa/etnologia , Enterocolite Pseudomembranosa/etiologia , Feminino , Hispânico ou Latino/estatística & dados numéricos , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Estudos Prospectivos , Fatores de Risco , População Branca/estatística & dados numéricos
11.
RSC Adv ; 13(20): 13786-13797, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37152577

RESUMO

A series of higher-order Ruddlesden-Popper phase materials - La3PrNi3O10-δ , La2Pr2Ni3O10-δ and LaPr3Ni3O10-δ - were synthesised and investigated by neutron powder diffraction to understand the oxygen defect structure and propose possible pathways for oxygen transport in these materials. Further complimentary DFT calculations of the materials were performed to support the experimental analysis. All of the phases were hypostoichiometric and it was observed that the majority of the oxygen vacancies were confined to the perovskite layers, with a preference for equatorial oxygen sites. A particular preference for vacancies in O(1) and O(5) sites at high temperatures was observed from neutron diffraction measurements which were further complimented by DFT calculations wherein the vacancy formation energy was found to be lowest at the O(1) site. Also, a preference for a curved oxygen transport pathway around the NiO6 octahedra was observed which agrees with the published literature for Ruddlesden-Popper phase materials. Lattice parameters for all three compositions showed a linear increase with increasing temperature, but the increase was greatest in the c parameter while the b parameter showed only a slight increase when compared to the a parameter. The thermal expansion coefficient was calculated for all compositions and was found to be in the range 13.0-13.4 × 10-6 °C-1, which is compatible with the commonly used electrolyte materials for solid oxide fuel cells.

12.
Chem Mater ; 35(3): 863-869, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36818589

RESUMO

Understanding the interfacial dynamics of batteries is crucial to control degradation and increase electrochemical performance and cycling life. If the chemical potential of a negative electrode material lies outside of the stability window of an electrolyte (either solid or liquid), a decomposition layer (interphase) will form at the interface. To better understand and control degradation at interfaces in batteries, theoretical models describing the rate of formation of these interphases are required. This study focuses on the growth kinetics of the interphase forming between solid electrolytes and metallic negative electrodes in solid-state batteries. More specifically, we demonstrate that the rate of interphase formation and metal plating during charge can be accurately described by adapting the theory of coupled ion-electron transfer (CIET). The model is validated by fitting experimental data presented in the first part of this study. The data was collected operando as a Na metal layer was plated on top of a NaSICON solid electrolyte (Na3.4Zr2Si2.4P0.6O12 or NZSP) inside an XPS chamber. This study highlights the depth of information which can be extracted from this single operando experiment and is widely applicable to other solid-state electrolyte systems.

13.
Chem Mater ; 35(3): 853-862, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36818592

RESUMO

To harness all of the benefits of solid-state battery (SSB) architectures in terms of energy density, their negative electrode should be an alkali metal. However, the high chemical potential of alkali metals makes them prone to reduce most solid electrolytes (SE), resulting in a decomposition layer called an interphase at the metal|SE interface. Quantitative information about the interphase chemical composition and rate of formation is challenging to obtain because the reaction occurs at a buried interface. In this study, a thin layer of Na metal (Na0) is plated on the surface of an SE of the NaSICON family (Na3.4Zr2Si2.4P0.6O12 or NZSP) inside a commercial X-ray photoelectron spectroscopy (XPS) system while continuously analyzing the composition of the interphase operando. We identify the existence of a solid electrolyte interphase at the Na0|NZSP interface, and more importantly, we demonstrate for the first time that this protocol can be used to study the kinetics of interphase formation. A second important outcome of this article is that the surface chemistry of NZSP samples can be tuned to improve their stability against Na0. It is demonstrated by XPS and time-resolved electrochemical impedance spectroscopy (EIS) that a native Na x PO y layer present on the surface of as-sintered NZSP samples protects their surface against decomposition.

14.
J Phys Chem C Nanomater Interfaces ; 127(41): 20325-20336, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37876977

RESUMO

A fundamental understanding of the electrochemical reactions and surface chemistry at the solid-gas interface in situ and operando is critical for electrode materials applied in electrochemical and catalytic applications. Here, the surface reactions and surface composition of a model of mixed ionic and electronic conducting (MIEC) perovskite oxide, (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-δ (LSCrF8255), were investigated in situ using synchrotron-based near-ambient pressure (AP) X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). The measurements were conducted with a surface temperature of 500 °C under 1 mbar of dry oxygen and water vapor, to reflect the implementation of the materials for oxygen reduction/evolution and H2O electrolysis in the applications such as solid oxide fuel cell (SOFC) and electrolyzers. Our direct experimental results demonstrate that, rather than the transition metal (TM) cations, the surface lattice oxygen is the significant redox active species under both dry oxygen and water vapor environments. It was proven that the electron holes formed in dry oxygen have a strong oxygen character. Meanwhile, a relatively higher concentration of surface oxygen vacancies was observed on the sample measured in water vapor. We further showed that in water vapor, the adsorption and dissociation of H2O onto the perovskite surface were through forming hydroxyl groups. In addition, the concentration of Sr surface species was found to increase over time in dry oxygen due to Sr surface segregation, with the presence of oxygen holes on the surface serving as an additional driving force. Comparatively, less Sr contents were observed on the sample in water vapor, which could be due to the volatility of Sr(OH)2. A secondary phase was also observed, which exhibited an enrichment in B-site cations, particularly in Fe and relatively in Cr, and a deficiency in A-site cation, notably in La and relatively in Sr. The findings and methodology of this study allow for the quantification of surface defect chemistry and surface composition evolution, providing crucial understanding and design guidelines in the electrocatalytic activity and durability of electrodes for efficient conversions of energy and fuels.

15.
Nat Commun ; 13(1): 5109, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042227

RESUMO

Chemical looping processes based on multiple-step reduction and oxidation of metal oxides hold great promise for a variety of energy applications, such as CO2 capture and conversion, gas separation, energy storage, and redox catalytic processes. Copper-based mixed oxides are one of the most promising candidate materials with a high oxygen storage capacity. However, the structural deterioration and sintering at high temperatures is one key scientific challenge. Herein, we report a precursor engineering approach to prepare durable copper-based redox sorbents for use in thermochemical looping processes for combustion and gas purification. Calcination of the CuMgAl hydrotalcite precursors formed mixed metal oxides consisting of CuO nanoparticles dispersed in the Mg-Al oxide support which inhibited the formation of copper aluminates during redox cycling. The copper-based redox sorbents demonstrated enhanced reaction rates, stable O2 storage capacity over 500 redox cycles at 900 °C, and efficient gas purification over a broad temperature range. We expect that our materials design strategy has broad implications on synthesis and engineering of mixed metal oxides for a range of thermochemical processes and redox catalytic applications.

16.
Nat Commun ; 12(1): 556, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495469

RESUMO

Oxide-ion conductors are important in various applications such as solid-oxide fuel cells. Although zirconia-based materials are widely utilized, there remains a strong motivation to discover electrolyte materials with higher conductivity that lowers the working temperature of fuel cells, reducing cost. Oxide-ion conductors with hexagonal perovskite related structures are rare. Herein, we report oxide-ion conductors based on a hexagonal perovskite-related oxide Ba7Nb4MoO20. Ba7Nb3.9Mo1.1O20.05 shows a wide stability range and predominantly oxide-ion conduction in an oxygen partial pressure range from 2 × 10-26 to 1 atm at 600 °C. Surprisingly, bulk conductivity of Ba7Nb3.9Mo1.1O20.05, 5.8 × 10-4 S cm-1, is remarkably high at 310 °C, and higher than Bi2O3- and zirconia-based materials. The high conductivity of Ba7Nb3.9Mo1.1O20.05 is attributable to the interstitial-O5 oxygen site, providing two-dimensional oxide-ion O1-O5 interstitialcy diffusion through lattice-O1 and interstitial-O5 sites in the oxygen-deficient layer, and low activation energy for oxide-ion conductivity. Present findings demonstrate the ability of hexagonal perovskite related oxides as superior oxide-ion conductors.

17.
Chem Mater ; 33(6): 2139-2146, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33867664

RESUMO

The potential of calcium-doped layered perovskite compounds, BaNd1-x Ca x InO4-x/2 (where x is the excess Ca content), as protonic conductors was experimentally investigated. The acceptor-doped ceramics exhibit improved total conductivities that were 1-2 orders of magnitude higher than those of the pristine material, BaNdInO4. The highest total conductivity of 2.6 × 10-3 S cm-1 was obtained in the BaNd0.8Ca0.2InO3.90 sample at a temperature of 750 °C in air. Electrochemical impedance spectroscopy measurements of the x = 0.1 and x = 0.2 substituted samples showed higher total conductivity under humid environments than those measured in a dry environment over a large temperature range (250-750 °C). At 500 °C, the total conductivity of the 20% substituted sample in humid air (∼3% H2O) was 1.3 × 10-4 S cm-1. The incorporation of water vapor decreased the activation energies of the bulk conductivity of the BaNd0.8Ca0.2InO3.90 sample from 0.755(2) to 0.678(2) eV in air. The saturated BaNd0.8Ca0.2InO3.90 sample contained 2.2 mol % protonic defects, which caused an expansion in the lattice according to the high-temperature X-ray diffraction data. Combining the studies of the impedance behavior with four-probe DC conductivity measurements obtained in humid air, which showed a decrease in the resistance of the x = 0.2 sample, we conclude that experimental evidence indicates that BaNd1-x Ca x InO4-x/2 is a fast proton conductor.

18.
Immunology ; 129(1): 105-14, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19824920

RESUMO

Endodontic infections are polymicrobial infections resulting in bone destruction and tooth loss. The host response to these infections is complex, including both innate and adaptive mechanisms. Osteopontin (OPN), a secreted, integrin-binding protein, functions in the regulation of immune responses and enhancement of leucocyte migration. We have assessed the role of OPN in the host response to endodontic infection using a well-characterized mouse model. Periapical bone loss associated with endodontic infection was significantly more severe in OPN-deficient mice compared with wild-type 3 weeks after infection, and was associated with increased areas of inflammation. Expression of cytokines associated with bone loss, interleukin-1alpha (IL-1alpha) and RANKL, was increased 3 days after infection. There was little effect of OPN deficiency on the adaptive immune response to these infections, as there was no effect of genotype on the ratio of bacteria-specific immunoglobulin G1 and G2a in the serum of infected mice. Furthermore, there was no difference in the expression of cytokines associated with T helper type 1/type2 balance: IL-12, IL-10 and interferon-gamma. In infected tissues, neutrophil infiltration into the lesion area was slightly increased in OPN-deficient animals 3 days after infection: this was confirmed by a significant increase in expression of neutrophil elastase in OPN-deficient samples at this time-point. We conclude that OPN has a protective effect on polymicrobial infection, at least partially because of alterations in phagocyte recruitment and/or persistence at the sites of infection, and that this molecule has a potential therapeutic role in polymicrobial infections.


Assuntos
Infecções Bacterianas/imunologia , Elastase de Leucócito/biossíntese , Osteopontina/metabolismo , Perda do Osso Alveolar/genética , Animais , Infecções Bacterianas/sangue , Infecções Bacterianas/genética , Infecções Bacterianas/fisiopatologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Imunidade , Imunoglobulinas/sangue , Elastase de Leucócito/genética , Camundongos , Camundongos Knockout , Osteopontina/genética , Osteopontina/imunologia , Periodontite Periapical/genética , Pulpite , Ligante RANK/biossíntese , Ligante RANK/genética
19.
RNA ; 14(5): 888-902, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18367721

RESUMO

Dendritic cells provide a critical link between innate and adaptive immunity and are essential to prime a naive T-cell response. The transition from immature dendritic cells to mature dendritic cells involves numerous changes in gene expression; however, the role of post-transcriptional changes in this process has been largely ignored. Tristetraprolin is an AU-rich element mRNA-binding protein that has been shown to regulate the stability of a number of cytokines and chemokines of mRNAs. Using TTP immunoprecipitations and Affymetrix GeneChips, we identified 393 messages as putative TTP mRNA targets in human dendritic cells. Gene ontology analysis revealed that approximately 25% of the identified mRNAs are associated with protein synthesis. We also identified six MHC Class I alleles, five MHC Class II alleles, seven chemokine and chemokine receptor genes, indoleamine 2,3 dioxygenase, and CD86 as putative TTP ligands. Real-time PCR was used to validate the GeneChip data for 15 putative target genes and functional studies performed for six target genes. These data establish that TTP regulates the expression of DUSP1, IDO, SOD2, CD86, and MHC Class I-B and F via the 3'-untranslated region of each gene. A novel finding is the demonstration that TTP can interact with and regulate the expression of non-AU-rich element-containing messages. The data implicate TTP as having a broader role in regulating and limiting the immune response than previously suspected.


Assuntos
Diferenciação Celular/fisiologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo , Regiões 3' não Traduzidas , Antígeno B7-2/genética , Sequência de Bases , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Quimiocinas/genética , DNA/genética , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Genes MHC Classe I , Genes MHC da Classe II , Genes Reporter , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Ligantes , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Receptores de Quimiocinas/genética , Homologia de Sequência do Ácido Nucleico , Tristetraprolina/imunologia
20.
J Colloid Interface Sci ; 580: 834-849, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32731167

RESUMO

Novel composite materials are increasingly developed for water treatment applications with the aim of achieving multifunctional behaviour, e.g. combining adsorption with light-driven remediation. The application of surface complexation models (SCM) is important to understand how adsorption changes as a function of pH, ionic strength and the presence of competitor ions. Component additive (CA) models describe composite sorbents using a combination of single-phase reference materials. However, predictive adsorption modelling using the CA-SCM approach remains unreliable, due to challenges in the quantitative determination of surface composition. In this study, we test the hypothesis that characterisation of the outermost surface using low energy ion scattering (LEIS) improves CA-SCM accuracy. We consider the TiO2/Fe2O3 photocatalyst-sorbents that are increasingly investigated for arsenic remediation. Due to an iron oxide surface coating that was not captured by bulk analysis, LEIS significantly improves the accuracy of our component additive predictions for monolayer surface processes: adsorption of arsenic(V) and surface acidity. We also demonstrate non-component additivity in multilayer arsenic(III) adsorption, due to changes in surface morphology/porosity. Our results demonstrate how surface-sensitive analytical techniques will improve adsorption models for the next generation of composite sorbents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA