Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 8: 1810, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093732

RESUMO

Traditional gene-resource management programs for forest trees are long-term endeavors requiring sustained organizational commitment covering extensive landscapes. While successful in maintaining adaptation, genetic diversity and capturing traditional growth attributes gains, these programs are dependent on rigid methods requiring elaborate mating schemes, thus making them slow in coping with climate change challenges. Here, we review the significance of Norway spruce in the boreal region and its current management practices. Next, we discuss opportunities offered by novel technologies and, with the use of computer simulations, we propose and evaluate a dynamic landscape gene-resource management in Norway. Our suggested long-term management approach capitalizes on: (1) existing afforestation activities, natural crosses, and DNA-based pedigree assembly to create structured pedigree for evaluation, thus traditional laborious control crosses are avoided and (2) landscape level genetic evaluation, rather than localized traditional progeny trials, allowing for screening of adapted individuals across multiple environmental gradients under changing climate. These advantages lead to greater genetic response to selection in adaptive traits without the traditional breeding and testing scheme, facilitating conservation of genetic resources within the breeding population of the most important forest tree species in Norway. The use of in situ selection from proven material exposed to realistic conditions over vast territories has not been conducted in forestry before. Our proposed approach is in contrast to worldwide current programs, where genetic evaluation is constrained by the range of environments where testing is conducted, which may be insufficient to capture the broad environmental variation necessary to tackle adaptation under changing climate.

2.
J Chromatogr A ; 1034(1-2): 183-9, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-15116929

RESUMO

Head-space sampling (HS) has been combined with enantioselective gas chromatography (GC) for the analysis of chiral and non-chiral monoterpenes present in the cortical tissues of five different Norway spruce clones. (1S)-(-)-alpha-Pinene, (1S,5S)-(-)sabinene, (1S)-(-)-beta-pinene, and (4S)-(-)limonene dominated over (1R)-(+)-alpha-pinene, (1R,5R)-(+)-sabinene, (1R)-(+)-beta-pinene, and (4R)-(+)-limonene. Results showed a large variation in the enantiomeric composition of cortical tissues between different clones. The development of HS-GC greatly increased the speed of precise analyses of chiral monoterpenes in small samples and therefore offer excellent opportunities in studies on the ecophysiological and chemotaxomic roles of these chiral components.


Assuntos
Cromatografia Gasosa/métodos , Monoterpenos/isolamento & purificação , Picea/classificação , Monoterpenos/química , Picea/química , Especificidade da Espécie , Estereoisomerismo
3.
Mol Ecol ; 17(18): 4134-50, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19238710

RESUMO

Norway spruce (Picea abies [L.] Karst.) is a broadly distributed European conifer tree whose history has been intensively studied by means of fossil records to infer the location of full-glacial refugia and the main routes of postglacial colonization. Here we use recently compiled fossil pollen data as a template to examine how past demographic events have influenced the species' modern genetic diversity. Variation was assessed in the mitochondrial nad1 gene containing two minisatellite regions. Among the 369 populations (4876 trees) assayed, 28 mitochondrial variants were identified. The patterns of population subdivision superimposed on interpolated fossil pollen distributions indicate that survival in separate refugia and postglacial colonization has led to significant structuring of genetic variation in the southern range of the species. The populations in the northern range, on the other hand, showed a shallow genetic structure consistent with the fossil pollen data, suggesting that the vast northern range was colonized from a single refugium. Although the genetic diversity decreased away from the putative refugia, there were large differences between different colonization routes. In the Alps, the diversity decreased over short distances, probably as a result of population bottlenecks caused by the presence of competing tree species. In northern Europe, the diversity was maintained across large areas, corroborating fossil pollen data in suggesting that colonization took place at high population densities. The genetic diversity increased north of the Carpathians, probably as a result of admixture of expanding populations from two separate refugia.


Assuntos
Fósseis , Genética Populacional , Picea/genética , Pólen/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Europa (Continente) , Evolução Molecular , Variação Genética , Geografia , Repetições Minissatélites , Filogenia , Análise de Componente Principal , Análise de Sequência de DNA , Árvores/genética
4.
New Phytol ; 168(3): 589-96, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16313642

RESUMO

Adaptive traits in Picea abies (Norway spruce) progenies are influenced by the maternal temperatures during seed production. Here, we have extended these studies by testing the effects of maternal photoperiod and temperature on phenology and frost hardiness on progenies. Using eight phytotron rooms, seeds from three unrelated crosses were made in an environmental 2 x 2 factorial combination of long and short days and high and low temperatures. The progenies were then forced to cease growth rapidly at the end of the first growing season. An interactive memory effect was expressed the second growth season. Progenies from high temperature and short days, and from low temperatures and long days, started growth later in spring, ceased shoot growth later in summer, grew taller and were less frost hardy in the autumn than their full siblings from low temperatures and short days, and from high temperatures and long days. Norway spruce has developed a memory mechanism, regulating adaptive plasticity by photoperiod and temperature, which could counteract harmful effects of a rapidly changing climate.


Assuntos
Luz , Picea/crescimento & desenvolvimento , Sementes/fisiologia , Adaptação Biológica/fisiologia , Flores/fisiologia , Noruega , Pólen/fisiologia , Estações do Ano , Temperatura
5.
Tree Physiol ; 15(7_8): 551-555, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-14965942

RESUMO

In 1989, identical crosses (2-3 females within males) were performed with Picea abies (L.) Karst. in a greenhouse seed orchard at Biri nursery and in an outdoor seed orchard at Huse, 32 km north of Biri. Pollination began 17 days earlier in the greenhouse than outdoors at Huse. The potted grafts in the greenhouse were moved outdoors when the seed cones were no longer receptive. Twelve full-sib family pairs (Biri and Huse) from these crosses were grown in a phytotron and tested for height and autumn frost hardiness during their first growing season. No significant difference was found between the indoor (Biri) and outdoor (Huse) progenies for height growth. However, the progenies from the greenhouse seed orchard were significantly more susceptible to frost than their full-sibs from the outdoor seed orchard. There was no significant interaction between males and the flowering environment, but a significant female x flowering environment interaction was present as a result of greater differences in frost hardiness between progenies from females in the greenhouse seed orchard than in the outdoor seed orchard. Although seeds from the outdoor seed orchard generally had a greater biomass than seeds from the greenhouse seed orchard, the difference in seed weight did not explain the difference in frost hardiness. We hypothesize that temperature and photoperiod during pollination and fertilization affect the frost hardiness of the progenies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA