Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(7): 1352-1369, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38866022

RESUMO

Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.


Assuntos
Drosophila melanogaster , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Obesidade , Complexo de Endopeptidases do Proteassoma , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Drosophila melanogaster/genética , Deficiência Intelectual/genética , Interferons/metabolismo , Interferons/genética , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/genética , Obesidade/genética , Fenótipo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
2.
Hum Genet ; 143(3): 437-453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38520561

RESUMO

General transcription factor IIIC subunit 5 (GTF3C5) encodes transcription factor IIIC63 (TFIIIC63). It binds to DNA to recruit another transcription factor, TFIIIB, and RNA polymerase III (Pol III) to mediate the transcription of small noncoding RNAs, such as tRNAs. Here, we report four individuals from three families presenting with a multisystem developmental disorder phenotype with biallelic variants in GTF3C5. The overlapping features include growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Using lymphoblastoid cell lines (LCLs) from two affected individuals, we observed a reduction in TFIIIC63 protein levels compared to control LCLs. Genome binding of TFIIIC63 protein is also reduced in LCL from one of the affected individuals. Additionally, approximately 40% of Pol III binding regions exhibited reduction in the level of Pol III occupancy in the mutant genome relative to the control, while approximately 54% of target regions showed comparable levels of Pol III occupancy between the two, indicating partial impairment of Pol III occupancy in the mutant genome. Yeasts with subject-specific variants showed temperature sensitivity and impaired growth, supporting the notion that the identified variants have deleterious effects. gtf3c5 mutant zebrafish showed developmental defects, including a smaller body, head, and eyes. Taken together, our data show that GTF3C5 plays an important role in embryonic development, and that biallelic variants in this gene cause a multisystem developmental disorder. Our study adds GTF3C5-related disorder to the growing list of genetic disorders associated with Pol III transcription machinery.


Assuntos
Deficiências do Desenvolvimento , RNA Polimerase III , Fatores de Transcrição TFIII , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Alelos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Deficiência Intelectual/genética , Mutação , Linhagem , Fenótipo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo , Transcrição Gênica , Peixe-Zebra/genética
3.
Am J Med Genet A ; : e63816, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007708

RESUMO

RFX7 encodes a transcription factor that is ubiquitously expressed and important for neural development. Haploinsufficiency of RFX7 is associated with intellectual disability, developmental delay, and diverse malformations of brain structures. Currently, there are only 16 clinically described individuals who have variants in RFX7. A recognizable pattern of malformation associated with mutation in RFX7 has not yet been uncovered. Here we describe the phenotypic presentation of two additional individuals who have novel de novo variants in RFX7. One of the individuals we describe is from an under-represented Afro-Caribbean population.

4.
Am J Med Genet A ; : e63719, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789278

RESUMO

Baraitser-Winter cerebrofrontofacial syndrome (BWCFF) is a variable multiple congenital anomaly condition, typically presenting postnatally with neurocognitive delays, distinctive facial features, cortical brain malformations, and in some, a variety of additional congenital malformations. However, only a few cases have reported the prenatal presentation of this syndrome. Here, we report two cases of BWCFF and their associated prenatal findings. One case presented with non-immune hydrops fetalis and a horseshoe kidney and was found to have a de novo heterozygous variant in ACTB (c.158A>G). The second case presented with gastroschisis, bilateral cleft lip and palate, and oligohydramnios, and was found to harbor a different de novo variant in ACTB (c.826G>A). Limited reports exist describing prenatally identified anomalies that include fetal growth restriction, increased nuchal fold, bilateral hydronephrosis, rocker bottom foot, talipes, cystic hygroma, omphalocele, and hydrops fetalis. In addition, only three of these cases have included detailed prenatal imaging findings. The two prenatal cases presented here demonstrate an expansion of the prenatal phenotype of BWCFF to include gastroschisis, lymphatic involvement, and oligohydramnios, which should each warrant consideration of this diagnosis in the setting of additional anomalies.

5.
Am J Med Genet A ; : e63817, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031459

RESUMO

Exome sequencing (ES) has emerged as an essential tool in the evaluation of neurodevelopmental disorders (NDD) of unknown etiology. Genome sequencing (GS) offers advantages over ES due to improved detection of structural, copy number, repeat number and non-coding variants. However, GS is less commonly utilized due to higher cost and more intense analysis. Here, we present nine cases of pediatric NDD that were molecularly diagnosed with GS between 2017 and 2022, following non-diagnostic ES. All individuals presented with global developmental delay or regression. Other features present in our cohort included epilepsy, white matter abnormalities, brain malformation and dysmorphic features. Two cases were diagnosed on GS due to newly described gene-disease relationship or variant reclassification (MAPK8IP3, CHD3). Additional features missed on ES that were later detected on GS were: intermediate-size deletions in three cases who underwent ES that were not validated for CNV detection, pathogenic variants within the non-protein coding genes SNORD118 and RNU7-1, pathogenic variant within the promoter region of GJB1, and a coding pathogenic variant within BCAP31 which was not sufficiently covered on ES. GS following non-diagnostic ES led to the identification of pathogenic variants in this cohort of nine cases, four of which would not have been identified by reanalysis alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA