RESUMO
A two-dimensional (2D) quantum electron system is characterized by quantized energy levels, or subbands, in the out-of-plane direction. Populating higher subbands and controlling the intersubband transitions have wide technological applications such as optical modulators and quantum cascade lasers. In conventional materials, however, the tunability of intersubband spacing is limited. Here we demonstrate electrostatic population and characterization of the second subband in few-layer InSe quantum wells, with giant tunability of its energy, population, and spin-orbit coupling strength, via the control of not only layer thickness but also the out-of-plane displacement field. A modulation of as much as 350% or over 250 meV is achievable, underscoring the promise of InSe for tunable infrared and THz sources, detectors, and modulators.
RESUMO
The Siberian frog Rana amurensis has a uniquely high tolerance to hypoxia among amphibians, as it is able to withstand several months underwater with almost no oxygen (0.2 mg/liter) vs. several days for other studied species. Since it was hypothesized that hypoxia actives the antioxidant defense system in hypoxia-tolerant animals, one would expect similar response in R. amurensis. Here, we studied the effect of hypoxia in the Siberian frog based on the transcriptomic data, activities of antioxidant enzyme, and content of low-molecular-weight antioxidants. Exposure to hypoxia upregulated expression of three relevant transcripts (catalase in the brain and two aldo-keto reductases in the liver). The activities of peroxidase in the blood and catalase in the liver were significantly increased, while the activity of glutathione S-transferase in the liver was reduced. The content of low-molecular-weight antioxidants (thiols and ascorbate) in the heart and liver was unaffected. In general, only a few components of the antioxidant defense system were affected by hypoxia, while most remained unchanged. Comparison to other hypoxia-tolerant species suggests species-specific adaptations to hypoxia-related ROS stress.
Assuntos
Antioxidantes , Hipóxia , Ranidae , Animais , Antioxidantes/metabolismo , Ranidae/metabolismo , Hipóxia/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Catalase/metabolismoRESUMO
A logical sequence of information-theoretic quantifiers of directional (causal) couplings in Markov chains is generated within the framework of dynamical causal effects (DCEs), starting from the simplest DCEs (in terms of localization of their functional elements) and proceeding step-by-step to more complex ones. Thereby, a system of 11 quantifiers is readily obtained, some of them coinciding with previously known causality measures widely used in time series analysis and often called "information transfers" or "flows" (transfer entropy, Ay-Polani information flow, Liang-Kleeman information flow, information response, etc.,) By construction, this step-by-step generation reveals logical relationships between all these quantifiers as specific DCEs. As a further concretization, diverse quantitative relationships between the transfer entropy and the Liang-Kleeman information flow are found both rigorously and numerically for coupled two-state Markov chains.
RESUMO
Using optical magnetospectroscopy, we investigate the magnetic excitations of Na_{2}Co_{2}TeO_{6} in a broad magnetic field range (0 T≤B≤17.5 T) at low temperature. Our measurements reveal rich spectra of in-plane magnetic excitations with a surprisingly large number of modes, even in the high-field spin-polarized state. Theoretical calculations find that the Na-occupation disorder in Na_{2}Co_{2}TeO_{6} plays a crucial role in generating these modes. Our Letter demonstrates the necessity to consider disorder in the spin environment in the search for Kitaev quantum spin liquid states in practicable materials.
RESUMO
Neurophysiological and psychological models posit that emotions depend on connections across wide-spread corticolimbic circuits. While previous studies using pattern recognition on neuroimaging data have shown differences between various discrete emotions in brain activity patterns, less is known about the differences in functional connectivity. Thus, we employed multivariate pattern analysis on functional magnetic resonance imaging data (i) to develop a pipeline for applying pattern recognition in functional connectivity data, and (ii) to test whether connectivity patterns differ across emotion categories. Six emotions (anger, fear, disgust, happiness, sadness, and surprise) and a neutral state were induced in 16 participants using one-minute-long emotional narratives with natural prosody while brain activity was measured with functional magnetic resonance imaging (fMRI). We computed emotion-wise connectivity matrices both for whole-brain connections and for 10 previously defined functionally connected brain subnetworks and trained an across-participant classifier to categorize the emotional states based on whole-brain data and for each subnetwork separately. The whole-brain classifier performed above chance level with all emotions except sadness, suggesting that different emotions are characterized by differences in large-scale connectivity patterns. When focusing on the connectivity within the 10 subnetworks, classification was successful within the default mode system and for all emotions. We thus show preliminary evidence for consistently different sustained functional connectivity patterns for instances of emotion categories particularly within the default mode system.
Assuntos
Conectoma/métodos , Emoções/fisiologia , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Adulto , Feminino , Voluntários Saudáveis , Humanos , Estimulação LuminosaRESUMO
High-capacity Li-rich Mn-based oxide cathodes show a great potential in next generation Li-ion batteries but suffer from some critical issues, such as, lattice oxygen escape, irreversible transition metal (TM) cation migration, and voltage decay. Herein, a comprehensive structural modulation in the bulk and surface of Li-rich cathodes is proposed through simultaneously introducing oxygen vacancies and P doping to mitigate these issues, and the improvement mechanism is revealed. First, oxygen vacancies and P doping elongates OO distance, which lowers the energy barrier and enhances the reversible cation migration. Second, reversible cation migration elevates the discharge voltage, inhibits voltage decay and lattice oxygen escape by increasing the Li vacancy-TM antisite at charge, and decreasing the trapped cations at discharge. Third, oxygen vacancies vary the lattice arrangement on the surface from a layered lattice to a spinel phase, which deactivates oxygen redox and restrains oxygen gas (O2 ) escape. Fourth, P doping enhances the covalency between cations and anions and elevates lattice stability in bulk. The modulated Li-rich cathode exhibits a high-rate capability, a good cycling stability, a restrained voltage decay, and an elevated working voltage. This study presents insights into regulating oxygen redox by facilitating reversible cation migration and suppressing O2 escape.
RESUMO
Antiferromagnets are promising components for spintronics due to their terahertz resonance, multilevel states and absence of stray fields. However, the zero net magnetic moment of antiferromagnets makes the detection of the antiferromagnetic order and the investigation of fundamental spin properties notoriously difficult. Here, we report an optical detection of Néel vector orientation through an ultra-sharp photoluminescence in the van der Waals antiferromagnet NiPS3 from bulk to atomically thin flakes. The strong correlation between spin flipping and electric dipole oscillator results in a linear polarization of the sharp emission, which aligns perpendicular to the spin orientation in the crystal. By applying an in-plane magnetic field, we achieve manipulation of the photoluminescence polarization. This correlation between emitted photons and spins in layered magnets provides routes for investigating magneto-optics in two-dimensional materials, and hence opens a path for developing opto-spintronic devices and antiferromagnet-based quantum information technologies.
RESUMO
A combination of inelastic neutron scattering (INS), far-IR magneto-spectroscopy (FIRMS), and Raman magneto-spectroscopy (RaMS) has been used to comprehensively probe magnetic excitations in Co(AsPh3)2I2 (1), a reported single-molecule magnet (SMM). With applied field, the magnetic zero-field splitting (ZFS) peak (2D') shifts to higher energies in each spectroscopy. INS placed the ZFS peak at 54 cm-1, as revealed by both variable-temperature (VT) and variable-magnetic-field data, giving results that agree well with those from both far-IR and Raman studies. Both FIRMS and RaMS also reveal the presence of multiple spin-phonon couplings as avoided crossings with neighboring phonons. Here, phonons refer to both intramolecular and lattice vibrations. The results constitute a rare case in which the spin-phonon couplings are observed with both Raman-active (g modes) and far-IR-active phonons (u modes; space group P21/c, no. 14, Z = 4 for 1). These couplings are fit using a simple avoided crossing model with coupling constants of ca. 1-2 cm-1. The combined spectroscopies accurately determine the magnetic excited level and the interaction of the magnetic excitation with phonon modes. Density functional theory (DFT) phonon calculations compare well with INS, allowing for the assignment of the modes and their symmetries. Electronic calculations elucidate the nature of ZFS in the complex. Features of different techniques to determine ZFS and other spin-Hamiltonian parameters in transition-metal complexes are summarized.
RESUMO
The quantum Hall effect has recently been generalized from transport of conserved charges to include transport of other approximately conserved-state variables, including spin and valley, via spin- or valley-polarized boundary states with different chiralities. Here, we report a class of quantum Hall effect in Bernal- or ABA-stacked trilayer graphene (TLG), the quantum parity Hall (QPH) effect, in which boundary channels are distinguished by even or odd parity under the system's mirror reflection symmetry. At the charge neutrality point, the longitudinal conductance [Formula: see text] is first quantized to [Formula: see text] at a small perpendicular magnetic field [Formula: see text], establishing the presence of four edge channels. As [Formula: see text] increases, [Formula: see text] first decreases to [Formula: see text], indicating spin-polarized counterpropagating edge states, and then, to approximately zero. These behaviors arise from level crossings between even- and odd-parity bulk Landau levels driven by exchange interactions with the underlying Fermi sea, which favor an ordinary insulator ground state in the strong [Formula: see text] limit and a spin-polarized state at intermediate fields. The transitions between spin-polarized and -unpolarized states can be tuned by varying Zeeman energy. Our findings demonstrate a topological phase that is protected by a gate-controllable symmetry and sensitive to Coulomb interactions.
RESUMO
Contributions of various natural and anthropogenic factors to trends of surface air temperatures at different latitudes of the Northern and Southern hemispheres on various temporal horizons are estimated from climate data since the 19th century in empirical autoregressive models. Along with anthropogenic forcing, we assess the impact of several natural climate modes including Atlantic Multidecadal Oscillation, El-Nino/Southern Oscillation, Interdecadal Pacific Oscillation, Pacific Decadal Oscillation, and Antarctic Oscillation. On relatively short intervals of the length of two or three decades, contributions of climate variability modes are considerable and comparable to the contributions of greenhouse gases and even exceed the latter. On longer intervals of about half a century and greater, the contributions of greenhouse gases dominate at all latitudinal belts including polar, middle, and tropical ones.
RESUMO
Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single-molecule magnets (SMMs). Spin-phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin-phonon coupling in molecules is challenging. We have found that far-IR magnetic spectra (FIRMS) of Co(PPh3 )2 X2 (Co-X; X=Cl, Br, I) reveal rarely observed spin-phonon coupling as avoided crossings between magnetic and u-symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero-field split (ZFS) levels of the S=3/2 electronic ground state were probed by INS, high-frequency and -field EPR (HFEPR), FIRMS, and frequency-domain FT terahertz EPR (FD-FT THz-EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) and g values. Ligand-field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities in Co-X, showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin-phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.
RESUMO
This work investigates numerics of several widely known phase-dynamic quantifiers of directional (causal) couplings between oscillatory systems: transfer entropy (TE), differential quantifier, and squared-coefficients quantifier based on an evolution map. The study is performed on the system of two stochastic Kuramoto oscillators within the framework of dynamical causal effects. The quantifiers are related to each other and to an asymptotic effect of the coupling on phase diffusion. Several novel findings are listed as follows: (i) for a non-synchronous regime and high enough noise levels, the TE rate multiplied by a certain characteristic time (called here reduced TE) equals twice an asymptotic effect of a directional coupling on phase diffusion; (ii) "information flow" expressed by the TE rate unboundedly rises with the coupling coefficient even in the domain of effective synchronization; (iii) in any effective synchronization regime, the reduced TE is equal to 1/8 n.u. in each direction for equal coupling coefficients and equal noise intensities, and it is in general a simple function of the ratio of noise intensities and the ratio of coupling coefficients.
RESUMO
When surface states (SSs) form in topological insulators (TIs), they inherit the properties of bulk bands, including the electron-hole (e-h) asymmetry but with much more profound impacts. Here via combining magneto-infrared spectroscopy with theoretical analysis, we show that e-h asymmetry significantly modifies the SS electronic structures when interplaying with the quantum confinement effect. Compared with the case without e-h asymmetry, the SSs now bear not only a band asymmetry, such as that in the bulk, but also a shift of the Dirac point relative to the bulk bands and a reduction of the hybridization gap of up to 70%. Our results signify the importance of e-h asymmetry in the band engineering of TIs in the thin-film limit.
RESUMO
A strong Coulomb interaction could lead to a strongly bound exciton with high-order excited states, similar to the Rydberg atom. The interaction of giant Rydberg excitons can be engineered for a correlated ordered exciton array with a Rydberg blockade, which is promising for realizing quantum simulation. Monolayer transition metal dichalcogenides, with their greatly enhanced Coulomb interaction, are an ideal platform to host the Rydberg excitons in two dimensions. Here, we employ helicity-resolved magneto-photocurrent spectroscopy to identify Rydberg exciton states up to 11s in monolayer WSe2. Notably, the radius of the Rydberg exciton at 11s can be as large as 214 nm, orders of magnitude larger than the 1s exciton. The giant valley-polarized Rydberg exciton not only provides an exciting platform to study the strong exciton-exciton interaction and nonlinear exciton response but also allows the investigation of the different interplay between the Coulomb interaction and Landau quantization, tunable from a low- to high-magnetic-field limit.
RESUMO
Transition metal dichalcogenides (TMDCs) heterostructure with a type II alignment hosts unique interlayer excitons with the possibility of spin-triplet and spin-singlet states. However, the associated spectroscopy signatures remain elusive, strongly hindering the understanding of the Moiré potential modulation of the interlayer exciton. In this work, we unambiguously identify the spin-singlet and spin-triplet interlayer excitons in the WSe2/MoSe2 heterobilayer with a 60° twist angle through the gate- and magnetic field-dependent photoluminescence spectroscopy. Both the singlet and triplet interlayer excitons show giant valley-Zeeman splitting between the K and K' valleys, a result of the large Landé g-factor of the singlet interlayer exciton and triplet interlayer exciton, which are experimentally determined to be â¼10.7 and â¼15.2, respectively, which is in good agreement with theoretical expectation. The photoluminescence (PL) from the singlet and triplet interlayer excitons show opposite helicities, determined by the atomic registry. Helicity-resolved photoluminescence excitation (PLE) spectroscopy study shows that both singlet and triplet interlayer excitons are highly valley-polarized at the resonant excitation with the valley polarization of the singlet interlayer exciton approaching unity at â¼20 K. The highly valley-polarized singlet and triplet interlayer excitons with giant valley-Zeeman splitting inspire future applications in spintronics and valleytronics.
RESUMO
We used a combination of polarized Raman spectroscopy and spin wave calculations to study magnetic excitations in the strong spin-orbit-coupled bilayer perovskite antiferromagnet Sr_{3}Ir_{2}O_{7}. We observed two broad Raman features at â¼800 and â¼1400 cm^{-1} arising from magnetic excitations. Unconventionally, the â¼800 cm^{-1} feature is fully symmetric (A_{1g}) with respect to the underlying tetragonal (D_{4h}) crystal lattice which, together with its broad line shape, definitively rules out the possibility of a single magnon excitation as its origin. In contrast, the â¼1400 cm^{-1} feature shows up in both the A_{1g} and B_{2g} channels. From spin wave and two-magnon scattering cross-section calculations of a tetragonal bilayer antiferromagnet, we identified the â¼800 cm^{-1} (1400 cm^{-1}) feature as two-magnon excitations with pairs of magnons from the zone-center Γ point (zone-boundary van Hove singularity X point). We further found that this zone-center two-magnon scattering is unique to bilayer perovskite magnets which host an optical branch in addition to the acoustic branch, as compared to their single layer counterparts. This zone-center two-magnon mode is distinct in symmetry from the time-reversal symmetry broken "spin wave gap" and "phase mode" proposed to explain the â¼92 meV (742 cm^{-1}) gap in resonant inelastic x-ray spectroscopy magnetic excitation spectra of Sr_{3}Ir_{2}O_{7}.
RESUMO
Helical conductors with spin-momentum locking are promising platforms for Majorana fermions. Here we report observation of two topologically distinct phases supporting helical edge states in charge neutral Bernal-stacked tetralayer graphene in Hall bar and Corbino geometries. As the magnetic field B_{â¥} and out-of-plane displacement field D are varied, we observe a phase diagram consisting of an insulating phase and two metallic phases, with 0, 1, and 2 helical edge states, respectively. These phases are accounted for by a theoretical model that relates their conductance to spin-polarization plateaus. Transitions between them arise from a competition among interlayer hopping, electrostatic and exchange interaction energies. Our work highlights the complex competing symmetries and the rich quantum phases in few-layer graphene.
RESUMO
Spin-forbidden intravalley dark excitons in tungsten-based transition-metal dichalcogenides (TMDCs), because of their unique spin texture and long lifetime, have attracted intense research interest. Here, we show that we can control the dark exciton electrostatically by dressing it with one free electron or free hole, forming the dark trions. The existence of the dark trions is suggested by the unique magneto-photoluminescence spectroscopy pattern of the boron nitride (BN)-encapsulated monolayer WSe2 device at low temperature. The unambiguous evidence of the dark trions is further obtained by directly resolving the radiation pattern of the dark trions through back focal plane imaging. The dark trions possess a binding energy of â¼15 meV, and they inherit the long lifetime and large g-factor from the dark exciton. Interestingly, under the out-of-plane magnetic field, dressing the dark exciton with one free electron or hole results in distinctively different valley polarization of the emitted photon, as a result of the different intervalley scattering mechanism for the electron and hole. Finally, the lifetime of the positive dark trion can be further tuned from â¼50 ps to â¼215 ps by controlling the gate voltage. The gate-tunable dark trions usher in new opportunities for excitonic optoelectronics and valleytronics.
RESUMO
We study dual-gated graphene bilayer/hBN moiré superlattices. Under zero magnetic field, we observe additional resistance peaks as the charge density varies. The peaks' resistivities vary approximately quadratically with an applied perpendicular displacement field D. Data fit to a continuum model yield a bilayer/hBN interaction energy scale â¼30 ± 10 meV. Under a perpendicular magnetic field, we observe Hofstadter butterfly spectra as well as symmetry-broken and fractional Chern insulator states. Their topology and lattice symmetry breaking is D-tunable, enabling the realization of new topological states in this system.
RESUMO
Circular-polarization-resolved magneto-infrared studies of multilayer epitaxial graphene (MEG) are performed using tunable quantum cascade lasers in high magnetic fields up to 17.5 T. Landau level (LL) transitions in the monolayer and bilayer graphene inclusions of MEG are resolved, and considerable electron-hole asymmetry is observed in the extracted electronic band structure. For monolayer graphene, a four-fold splitting of the n = 0 to n = 1 LL transition is evidenced and attributed to the lifting of the valley and spin degeneracy of the zeroth LL and the broken electron-hole symmetry. The magnetic field dependence of the splitting further reveals its possible mechanisms. The best fit to experimental data yields effective g-factors, gVS* = 6.7 and gZS* = 4.8, for the valley and Zeeman splittings, respectively.