RESUMO
Multiple sclerosis (MS) is a widespread neurodegenerative autoimmune disease with unknown etiology. It is increasingly evident that, together with pathogenic T cells, autoreactive B cells are among the major players in MS development. The analysis of myelin neuroantigen-specific antibody repertoires and their possible cross-reactivity against environmental antigens, including viral proteins, could shed light on the mechanism of MS induction and progression. A phage display library of single-chain variable fragments (scFvs) was constructed from blood lymphocytes of patients with MS as a potential source of representative MS autoantibodies. Structural alignment of 13 clones selected toward myelin basic protein (MBP), one of the major myelin antigens, showed high homology within variable regions with cerebrospinal fluid MS-associated antibodies as well as with antibodies toward Epstein-Barr latent membrane protein 1 (LMP1). Three scFv clones showed pronounced specificity to MBP fragments 65-92 and 130-156, similar to the serum MS antibodies. One of these clones, designated E2, in both scFv and full-size human antibody constructs, was shown to react with both MBP and LMP1 proteins in vitro, suggesting natural cross-reactivity. Thus, antibodies induced against LMP1 during Epstein-Barr virus infection might act as inflammatory trigger by reacting with MBP, suggesting molecular mimicry in the mechanism of MS pathogenesis.
Assuntos
Antígenos Virais/imunologia , Autoanticorpos/imunologia , Herpesvirus Humano 4/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/virologia , Proteína Básica da Mielina/imunologia , Biblioteca de Peptídeos , Adulto , Idoso , Diversidade de Anticorpos , Antígenos Virais/genética , Autoanticorpos/genética , Reações Cruzadas , Humanos , Pessoa de Meia-Idade , Mimetismo Molecular , Esclerose Múltipla Recidivante-Remitente/etiologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Homologia Estrutural de Proteína , Proteínas da Matriz Viral/imunologia , Adulto JovemRESUMO
A novel species is proposed for two strains of methanotrophic bacteria (H2(T) and Sakb1) isolated from an acidic (pH 4.3) Sphagnum peat bog lake (Teufelssee, Germany) and an acidic (pH 4.2) tropical forest soil (Thailand), respectively. Cells of strains H2(T) and Sakb1 were aerobic, Gram-negative, non-motile, straight or curved rods that were covered by large polysaccharide capsules and contained an intracytoplasmic membrane system typical of type II methanotrophs. They possessed both a particulate and a soluble methane monooxygenase and utilized the serine pathway for carbon assimilation. They were moderately acidophilic organisms capable of growth between pH 4.4 and 7.5 (optimum 5.8-6.2). The most unique characteristic of these strains was the phospholipid fatty acid profile. In addition to the signature fatty acid of type II methanotrophs (18 : 1omega8c), the cells also contained large amounts of what was previously considered to be a signature fatty acid of type I methanotrophs, 16 : 1omega8c. The DNA G+C contents of strains H2(T) and Sakb1 were 61.5 and 62.1 mol%, respectively. The 16S rRNA gene sequences possessed 96-98 % similarity to sequences of other type II methanotrophs in the genera Methylosinus and Methylocystis. 16S rRNA gene sequence and pmoA phylogeny demonstrated that the strains form a novel lineage within the genus Methylocystis. DNA-DNA hybridization values of strain H2(T) with Methylocystis parvus OBBP(T) and Methylocystis echinoides IMET 10491(T) were 18 and 25 %, respectively. Thus, it is proposed that these two strains represent a novel species, Methylocystis heyeri sp. nov. Strain H2(T) (=DSM 16984(T)=VKM B-2426(T)) is the type strain.
Assuntos
Ácidos Graxos/análise , Methylocystaceae/química , DNA Bacteriano/genética , DNA Ribossômico/genética , Espectrometria de Massas , Methylocystaceae/classificação , Methylocystaceae/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Áreas AlagadasRESUMO
Representatives of the genus Beijerinckia are known as heterotrophic, dinitrogen-fixing bacteria which utilize a wide range of multicarbon compounds. Here we show that at least one of the currently known species of this genus, i.e., Beijerinckia mobilis, is also capable of methylotrophic metabolism coupled with the ribulose bisphosphate (RuBP) pathway of C1 assimilation. A complete suite of dehydrogenases commonly involved in the sequential oxidation of methanol via formaldehyde and formate to CO2 was detected in cell extracts of B. mobilis grown on CH3OH. Carbon dioxide produced by oxidation of methanol was further assimilated via the RuBP pathway as evidenced by reasonably high activities of phosphoribulokinase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Detection and partial sequence analysis of genes encoding the large subunits of methanol dehydrogenase (mxaF) and form I RubisCO (cbbL) provided genotypic evidence for methylotrophic autotrophy in B. mobilis.