Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(2): 227-232, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27956637

RESUMO

On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hydrogen-bonded structure of the outermost water layers occurs at 257 K. The spectral calculations from the molecular dynamics simulations reproduce the experimental findings; this allows us to interpret our experimental findings in terms of a stepwise change from one to two molten bilayers at the transition temperature.

2.
Phys Rev Lett ; 123(14): 148002, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702185

RESUMO

We study experimentally and theoretically the thickness of the coating obtained by pulling out a rod from a reservoir of yield-stress fluid. Opposite to Newtonian fluids, the coating thickness for a fluid of large enough yield stress is determined solely by the flow inside the reservoir and not by the flow inside the meniscus. The stress field inside the reservoir determines the thickness of the coating layer. The thickness is observed to increase nonlinearly with the sizes of the rod and of the reservoir. We develop a theoretical framework that describes this behavior and allows us to precisely predict the coating thickness.

3.
Phys Rev Lett ; 119(13): 133003, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341676

RESUMO

Phase-resolved sum-frequency generation measurements combined with molecular dynamics simulations are employed to study the effect of temperature on the molecular arrangement of water on the basal face of ice. The topmost monolayer, interrogated through its nonhydrogen-bonded, free O-H stretch peak, exhibits a maximum in surface H-bond density around 200 K. This maximum results from two competing effects: above 200 K, thermal fluctuations cause the breaking of H bonds; below 200 K, the formation of bulklike crystalline interfacial structures leads to H-bond breaking. Knowledge of the surface structure of ice is critical for understanding reactions occurring on ice surfaces and ice nucleation.

4.
Angew Chem Int Ed Engl ; 56(49): 15540-15544, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28941041

RESUMO

The surface of ice has been reported to be disordered at temperatures well below the bulk melting point. However, the precise nature of this disorder has been a topic of intense debate. Herein, we study the molecular properties of the surface of ice as a function of temperatures using heterodyne-detected sum-frequency generation spectroscopy. We observe that, down to 245 K, the spectral response of the surface of ice contains a component that is indistinguishable from supercooled liquid water.

5.
Phys Rev E ; 103(5-1): 052609, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134281

RESUMO

Starch suspensions are often used as model systems to demonstrate extreme shear-thickening effects. We study the aging of cornstarch particles in aqueous suspensions at room temperature by granulometry and rheological measurements. When starch is diluted in glycerol, no long-term changes are observed. The situation differs when water is used as solvent. For volume fractions up to 20 vol %, when the cornstarch suspensions in water are stored under continual agitation, we observe an increase in viscosity. When the cornstarch suspension is aged under quiescent conditions, no evolution of the particle size is observed. In the concentrated situation, the rheological properties vary independent of the storage condition. We show that the increase in viscosity is related to air trapped in the pore space and to the swelling of the granules and leakage of the amylopectin component of the starch into the surrounding water. The relative importance of the two processes depends upon the particle concentration and upon the energy brought to the system.

6.
Sci Rep ; 10(1): 20681, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244013

RESUMO

Flexible dielectrics that harvest mechanical energy via electrostatic effects are excellent candidates as power sources for wearable electronics or autonomous sensors. The integration of a soft dielectric composite (polydimethylsiloxane PDMS-carbon black CB) into two mechanical energy harvesters is here presented. Both are based on a similar cantilever beam but work on different harvesting principles: variable capacitor and triboelectricity. We show that without an external bias the triboelectric beam harvests a net density power of 0.3 [Formula: see text] under a sinusoidal acceleration of 3.9g at 40 Hz. In a variable capacitor configuration, a bias of 0.15 [Formula: see text] is required to get the same energy harvesting performance under the same working conditions. As variable capacitors' harvesting performance are quadratically dependent on the applied bias, increasing the bias allows the system to harvest energy much more efficiently than the triboelectric one. The present results make CB/PDMS composites promising for autonomous portable multifunctional systems and intelligent sensors.

7.
Sci Adv ; 6(16): eaay5589, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32494596

RESUMO

Shear thickening corresponds to an increase of the viscosity as a function of the shear rate. It is observed in many concentrated suspensions in nature and industry: water or oil saturated sediments, crystal-bearing magma, fresh concrete, silica suspensions, and cornstarch mixtures. Here, we reveal how shear-thickening suspensions flow, shedding light onto as yet non-understood complex dynamics reported in the literature. When shear thickening is important, we show the existence of density fluctuations that appear as periodic waves moving in the direction of flow and breaking azimuthal symmetry. They come with strong normal stress fluctuations of the same periodicity. The flow includes small areas of normal stresses of the order of tens of kilopascals and areas of normal stresses of the order of hundreds of pascals. These stress inhomogeneities could play an important role in the damage caused by thickening fluids in the industry.

8.
J Phys Chem Lett ; 9(6): 1290-1294, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29481753

RESUMO

We study the resonant interaction of the OH stretch vibrations of water molecules at the surfaces of liquid water and ice using heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy. By studying different isotopic mixtures of H2O and D2O, we vary the strength of the interaction, and we monitor the resulting effect on the HD-SFG spectrum of the OH stretch vibrations. We observe that the near-resonant coupling effects are weaker at the surface than in the bulk, for both water and ice, indicating that for both phases of water the OH vibrations are less strongly delocalized at the surface than in the bulk.

9.
J Phys Chem Lett ; 9(11): 2838-2842, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29741089

RESUMO

Measurements of the friction coefficient of steel-on-ice over a large temperature range reveal very high friction at low temperatures (-100 °C) and a steep decrease in the friction coefficient with increasing temperature. Very low friction is only found over the limited temperature range typical for ice skating. The strong decrease in the friction coefficient with increasing temperature exhibits Arrhenius behavior with an activation energy of Ea ≈ 11.5 kJ mol-1. Remarkably, molecular dynamics simulations of the ice-air interface reveal a very similar activation energy for the mobility of surface molecules. Weakly hydrogen-bonded surface molecules diffuse over the surface in a rolling motion, their number and mobility increasing with increasing temperature. This correlation between macroscopic friction and microscopic molecular mobility indicates that slippery ice arises from the high mobility of its surface molecules, making the ice surface smooth and the shearing of the weakly bonded surface molecules easy.

10.
Nat Commun ; 8: 15548, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28537259

RESUMO

Nanoscopic and microscopic water droplets and ice crystals embedded in liquid hydrophobic surroundings are key components of aerosols, rocks, oil fields and the human body. The chemical properties of such droplets critically depend on the interfacial structure of the water droplet. Here we report the surface structure of 200 nm-sized water droplets in mixtures of hydrophobic oils and surfactants as obtained from vibrational sum frequency scattering measurements. The interface of a water droplet shows significantly stronger hydrogen bonds than the air/water or hexane/water interface and previously reported planar liquid hydrophobic/water interfaces at room temperature. The observed spectral difference is similar to that of a planar air/water surface at a temperature that is ∼50 K lower. Supercooling the droplets to 263 K does not change the surface structure. Below the homogeneous ice nucleation temperature, a single vibrational mode is present with a similar mean hydrogen-bond strength as for a planar ice/air interface.

11.
J Phys Chem Lett ; 8(15): 3656-3660, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28715224

RESUMO

We study the signatures of the OH stretch vibrations at the basal surface of ice using heterodyne-detected sum-frequency generation and molecular dynamics simulations. At 150 K, we observe seven distinct modes in the sum-frequency response, five of which have an analogue in the bulk, and two pure surface-specific modes at higher frequencies (∼3530 and ∼3700 cm-1). The band at ∼3530 cm-1 has not been reported previously. Using molecular dynamics simulations, we find that the ∼3530 cm-1 band contains contributions from OH stretch vibrations of both fully coordinated interfacial water molecules and water molecules with two donor and one acceptor hydrogen bond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA