RESUMO
The evident shedding of the SARS-CoV-2 RNA particles from infected individuals into the wastewater opened up a tantalizing array of possibilities for prediction of COVID-19 prevalence prior to symptomatic case identification through community testing. Many countries have therefore explored the use of wastewater metrics as a surveillance tool, replacing traditional direct measurement of prevalence with cost-effective approaches based on SARS-CoV-2 RNA concentrations in wastewater samples. Two important aspects in building prediction models are: time over which the prediction occurs and space for which the predicted case numbers is shown. In this review, our main focus was on finding mathematical models which take into the account both the time-varying and spatial nature of wastewater-based metrics into account. We used six main characteristics as our assessment criteria: i) modelling approach; ii) temporal coverage; iii) spatial coverage; iv) sample size; v) wastewater sampling method; and vi) covariates included in the modelling. The majority of studies in the early phases of the pandemic recognized the temporal association of SARS-CoV-2 RNA concentration level in wastewater with the number of COVID-19 cases, ignoring their spatial context. We examined 15 studies up to April 2023, focusing on models considering both temporal and spatial aspects of wastewater metrics. Most early studies correlated temporal SARS-CoV-2 RNA levels with COVID-19 cases but overlooked spatial factors. Linear regression and SEIR models were commonly used (n = 10, 66.6 % of studies), along with machine learning (n = 1, 6.6 %) and Bayesian approaches (n = 1, 6.6 %) in some cases. Three studies employed spatio-temporal modelling approach (n = 3, 20.0 %). We conclude that the development, validation and calibration of further spatio-temporally explicit models should be done in parallel with the advancement of wastewater metrics before the potential of wastewater as a surveillance tool can be fully realised.
RESUMO
The potential utility of wastewater-based epidemiology as an early warning tool has been explored widely across the globe during the current COVID-19 pandemic. Methods to detect the presence of SARS-CoV-2 RNA in wastewater were developed early in the pandemic, and extensive work has been conducted to evaluate the relationship between viral concentration and COVID-19 case numbers at the catchment areas of sewage treatment works (STWs) over time. However, no attempt has been made to develop a model that predicts wastewater concentration at fine spatio-temporal resolutions covering an entire country, a necessary step towards using wastewater monitoring for the early detection of local outbreaks. We consider weekly averages of flow-normalised viral concentration, reported as the number of SARS-CoV-2N1 gene copies per litre (gc/L) of wastewater available at 303 STWs over the period between 1 June 2021 and 30 March 2022. We specify a spatially continuous statistical model that quantifies the relationship between weekly viral concentration and a collection of covariates covering socio-demographics, land cover and virus associated genomic characteristics at STW catchment areas while accounting for spatial and temporal correlation. We evaluate the model's predictive performance at the catchment level through 10-fold cross-validation. We predict the weekly viral concentration at the population-weighted centroid of the 32,844 lower super output areas (LSOAs) in England, then aggregate these LSOA predictions to the Lower Tier Local Authority level (LTLA), a geography that is more relevant to public health policy-making. We also use the model outputs to quantify the probability of local changes of direction (increases or decreases) in viral concentration over short periods (e.g. two consecutive weeks). The proposed statistical framework can predict SARS-CoV-2 viral concentration in wastewater at high spatio-temporal resolution across England. Additionally, the probabilistic quantification of local changes can be used as an early warning tool for public health surveillance.