Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genet Med ; 21(10): 2199-2207, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30894705

RESUMO

PURPOSE: We evaluated clinical and genetic features enriched in patients with multiple Mendelian conditions to determine which patients are more likely to have multiple potentially relevant genetic findings (MPRF). METHODS: Results of the first 7698 patients who underwent exome sequencing at Ambry Genetics were reviewed. Clinical and genetic features were examined and degree of phenotypic overlap between the genetic diagnoses was evaluated. RESULTS: Among patients referred for exome sequencing, 2% had MPRF. MPRF were more common in patients from consanguineous families and patients with greater clinical complexity. The difference in average number of organ systems affected is small: 4.3 (multiple findings) vs. 3.9 (single finding) and may not be distinguished in clinic. CONCLUSION: Patients with multiple genetic diagnoses had a slightly higher number of organ systems affected than patients with single genetic diagnoses, largely because the comorbid conditions affected overlapping organ systems. Exome testing may be beneficial for all cases with multiple organ systems affected. The identification of multiple relevant genetic findings in 2% of exome patients highlights the utility of a comprehensive molecular workup and updated interpretation of existing genomic data; a single definitive molecular diagnosis from analysis of a limited number of genes may not be the end of a diagnostic odyssey.


Assuntos
Técnicas e Procedimentos Diagnósticos/estatística & dados numéricos , Sequenciamento do Exoma/métodos , Testes Genéticos/métodos , Diagnóstico Diferencial , Exoma/genética , Feminino , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Mutação/genética , Fenótipo , Estudos Retrospectivos , Análise de Sequência de DNA/métodos
2.
Neurochem Res ; 44(1): 49-60, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29619614

RESUMO

CNS inflammatory responses are linked to cognitive impairment in humans. Research in animal models supports this connection by showing that inflammatory cytokines suppress long-term potentiation (LTP), the best-known cellular correlate of memory. Cytokine-induced modulation of LTP has been previously studied in vivo or in brain slices, two experimental approaches containing multiple cell populations responsive to cytokines. In their target cells, cytokines commonly increase the expression of multiple cytokines, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Whether cytokines suppress LTP by direct effects on neurons or by indirect mechanisms is still an open question. Here, we evaluated the effect of a major set of inflammatory cytokines including tumor necrosis factor-α (TNFα), interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) on chemically-induced LTP (cLTP) in isolated hippocampal synaptosomes of mice, using fluorescence analysis of single-synapse long-term potentiation (FASS-LTP). We found that TNFα and IL-1ß suppress synaptosomal cLTP. In contrast, cLTP was not affected by IL-18, at a concentration previously shown to block LTP in hippocampal slices. We also found that IL-18 does not impair cLTP or brain-derived neurotrophic factor (BDNF) signaling in primary hippocampal neuronal cultures. Thus, using both synaptosomes and neuron cultures, our data suggest that IL-18 impairs LTP by indirect mechanisms, which may depend on non-neuronal cells, such as glia. Notably, our results demonstrate that TNFα and IL-1ß directly suppress hippocampal plasticity via neuron-specific mechanisms. A better understanding of the brain's cytokine networks and their final molecular effectors is crucial to identify specific targets for intervention.


Assuntos
Hipocampo/fisiologia , Interleucina-18/farmacologia , Interleucina-1beta/farmacologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Células Cultivadas , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 113(12): E1691-700, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26957603

RESUMO

The linear distribution of genes across chromosomes and the spatial localization of genes within the nucleus are related to their transcriptional regulation. The mechanistic consequences of linear gene order, and how it may relate to the functional output of genome organization, remain to be fully resolved, however. Here we tested the relationship between linear and 3D organization of gene regulation during myogenesis. Our analysis has identified a subset of topologically associated domains (TADs) that are significantly enriched for muscle-specific genes. These lineage-enriched TADs demonstrate an expression-dependent pattern of nuclear organization that influences the positioning of adjacent nonenriched TADs. Therefore, lineage-enriched TADs inform cell-specific genome organization during myogenesis. The reduction of allelic spatial distance of one of these domains, which contains Myogenin, correlates with reduced transcriptional variability, identifying a potential role for lineage-specific nuclear topology. Using a fusion-based strategy to decouple mitosis and myotube formation, we demonstrate that the cell-specific topology of syncytial nuclei is dependent on cell division. We propose that the effects of linear and spatial organization of gene loci on gene regulation are linked through TAD architecture, and that mitosis is critical for establishing nuclear topologies during cellular differentiation.


Assuntos
Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Alelos , Mapeamento Cromossômico , Fibroblastos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Imageamento Tridimensional , Hibridização in Situ Fluorescente , Proteína MyoD/genética , Miogenina/genética , Estrutura Terciária de Proteína , Transcrição Gênica , Transdução Genética
4.
Differentiation ; 102: 19-26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979997

RESUMO

The protein-DNA complexes that compose the end of mammalian chromosomes-telomeres-serve to stabilize linear genomic DNA and are involved in cellular and organismal aging. One mechanism that protects telomeres from premature degradation is the formation of structures called t-loops, in which the single-stranded 3' overhang present at the terminal end of telomeres loops back and invades medial double-stranded telomeric DNA. We identified looped structures formed between terminal chromosome ends and interstitial telomeric sequences (ITSs), which are found throughout the human genome, that we have termed interstitial telomeric loops (ITLs). While they form in a TRF2-dependent manner similar to t-loops, ITLs further require the physical interaction of TRF2 with the nuclear intermediate filament protein lamin A/C. Our findings suggest that interactions between telomeres and the nucleoskeleton broadly impact genomic integrity, including telomere stability, chromosome structure, and chromosome fragility. Here, we review the roles of TRF2 and lamin A/C in telomere biology and consider how their interaction may relate telomere homeostasis to cellular and organismal aging.


Assuntos
Envelhecimento/genética , Lamina Tipo A/genética , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Animais , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
5.
Am J Med Genet A ; 176(12): 2858-2861, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30450763

RESUMO

Hennekam lymphangiectasia-lymphedema syndrome (HKLLS) is a genetically heterogeneous lymphatic dysplasia with characteristic of facial dysmorphism, neurocognitive impairments, and abnormalities of the pericardium, intestinal tract, and extremities. It is an autosomal recessive condition caused by biallelic mutations in CCBE1 (collagen- and calcium-binding epidermal growth factor domain-containing protein 1) (HKLLS1; OMIM 235510) or FAT4 (HKLLS2; OMIM 616006). CCBE1 acts via ADAMTS3 (a disintegrin and metalloprotease with thrombospondin motifs-3 protease) to enhance vascular endothelial growth factor C signaling. There is report of one family supporting mutations in ADAMTS3 as causative for the phenotype labeled as HKLLS3. Here, we report an additional case of HKLLS that appears to be associated with homozygous nonsense mutation of ADAMTS3.


Assuntos
Proteínas ADAMTS/genética , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação com Perda de Função , Linfangiectasia Intestinal/diagnóstico , Linfangiectasia Intestinal/genética , Linfedema/diagnóstico , Linfedema/genética , Pró-Colágeno N-Endopeptidase/genética , Alelos , Biópsia , Estudos de Associação Genética/métodos , Genótipo , Humanos , Recém-Nascido , Masculino , Fenótipo , Sequenciamento do Exoma
6.
Proc Natl Acad Sci U S A ; 112(36): E5078-87, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305968

RESUMO

In the aged brain, synaptic plasticity and memory show increased vulnerability to impairment by the inflammatory cytokine interleukin 1ß (IL-1ß). In this study, we evaluated the possibility that synapses may directly undergo maladaptive changes with age that augment sensitivity to IL-1ß impairment. In hippocampal neuronal cultures, IL-1ß increased the expression of the IL-1 receptor type 1 and the accessory coreceptor AcP (proinflammatory), but not of the AcPb (prosurvival) subunit, a reconfiguration that potentiates the responsiveness of neurons to IL-1ß. To evaluate whether synapses develop a similar heightened sensitivity to IL-1ß with age, we used an assay to track long-term potentiation (LTP) in synaptosomes. We found that IL-1ß impairs LTP directly at the synapse and that sensitivity to IL-1ß is augmented in aged hippocampal synapses. The increased synaptic sensitivity to IL-1ß was due to IL-1 receptor subunit reconfiguration, characterized by a shift in the AcP/AcPb ratio, paralleling our culture data. We suggest that the age-related increase in brain IL-1ß levels drives a shift in IL-1 receptor configuration, thus heightening the sensitivity to IL-1ß. Accordingly, selective blocking of AcP-dependent signaling with Toll-IL-1 receptor domain peptidomimetics prevented IL-1ß-mediated LTP suppression and blocked the memory impairment induced in aged mice by peripheral immune challenge (bacterial lipopolysaccharide). Overall, this study demonstrates that increased AcP signaling, specifically at the synapse, underlies the augmented vulnerability to cognitive impairment by IL-1ß that occurs with age.


Assuntos
Interleucina-1beta/farmacologia , Neurônios/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/metabolismo , Sinapses/metabolismo , Fatores Etários , Animais , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Hipocampo/citologia , Hipocampo/metabolismo , Proteína Acessória do Receptor de Interleucina-1/genética , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Interferência de RNA , Ratos Sprague-Dawley , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
7.
Hum Mutat ; 38(5): 600-608, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28106320

RESUMO

Ascertaining a diagnosis through exome sequencing can provide potential benefits to patients, insurance companies, and the healthcare system. Yet, as diagnostic sequencing is increasingly employed, vast amounts of human genetic data are produced that need careful curation. We discuss methods for accurately assessing the clinical validity of gene-disease relationships to interpret new research findings in a clinical context and increase the diagnostic rate. The specifics of a gene-disease scoring system adapted for use in a clinical laboratory are described. In turn, clinical validity scoring of gene-disease relationships can inform exome reporting for the identification of new or the upgrade of previous, clinically relevant gene findings. Our retrospective analysis of all reclassification reports from the first 4 years of diagnostic exome sequencing showed that 78% were due to new gene-disease discoveries published in the literature. Among all exome positive/likely positive findings in characterized genes, 32% were in genetic etiologies that were discovered after 2010. Our data underscore the importance and benefits of active and up-to-date curation of a gene-disease database combined with critical clinical validity scoring and proactive reanalysis in the clinical genomics era.


Assuntos
Exoma , Estudos de Associação Genética/métodos , Genômica/métodos , Estudos de Associação Genética/normas , Genômica/normas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de DNA
8.
J Biol Chem ; 289(30): 20615-29, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24917666

RESUMO

The mammalian target of rapamycin (mTOR) pathway has multiple important physiological functions, including regulation of protein synthesis, cell growth, autophagy, and synaptic plasticity. Activation of mTOR is necessary for the many beneficial effects of brain-derived neurotrophic factor (BDNF), including dendritic translation and memory formation in the hippocampus. At present, however, the role of mTOR in BDNF's support of survival is not clear. We report that mTOR activation is necessary for BDNF-dependent survival of primary rat hippocampal neurons, as either mTOR inhibition by rapamycin or genetic manipulation of the downstream molecule p70S6K specifically blocked BDNF rescue. Surprisingly, however, BDNF did not promote neuron survival by up-regulating mTOR-dependent protein synthesis or through mTOR-dependent suppression of caspase-3 activation. Instead, activated mTOR was responsible for BDNF's suppression of autophagic flux. shRNA against the autophagic machinery Atg7 or Atg5 prolonged the survival of neurons co-treated with BDNF and rapamycin, suggesting that suppression of mTOR in BDNF-treated cells resulted in excessive autophagy. Finally, acting as a physiological analog of rapamycin, IL-1ß impaired BDNF signaling by way of inhibiting mTOR activation as follows: the cytokine induced caspase-independent neuronal death and accelerated autophagic flux in BDNF-treated cells. These findings reveal a novel mechanism of BDNF neuroprotection; BDNF not only prevents apoptosis through inhibiting caspase activation but also promotes neuron survival through modulation of autophagy. This protection mechanism is vulnerable under chronic inflammation, which deregulates autophagy through impairing mTOR signaling. These results may be relevant to age-related changes observed in neurodegenerative diseases.


Assuntos
Autofagia/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Imunossupressores/farmacologia , Interleucina-1beta/metabolismo , Neurônios/metabolismo , Sirolimo/farmacologia , Animais , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo
9.
J Am Med Inform Assoc ; 31(2): 472-478, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37665746

RESUMO

OBJECTIVE: We implemented a chatbot consent tool to shift the time burden from study staff in support of a national genomics research study. MATERIALS AND METHODS: We created an Institutional Review Board-approved script for automated chat-based consent. We compared data from prospective participants who used the tool or had traditional consent conversations with study staff. RESULTS: Chat-based consent, completed on a user's schedule, was shorter than the traditional conversation. This did not lead to a significant change in affirmative consents. Within affirmative consents and declines, more prospective participants completed the chat-based process. A quiz to assess chat-based consent user understanding had a high pass rate with no reported negative experiences. CONCLUSION: Our report shows that a structured script can convey important information while realizing the benefits of automation and burden shifting. Analysis suggests that it may be advantageous to use chatbots to scale this rate-limiting step in large research projects.


Assuntos
Genômica , Consentimento Livre e Esclarecido , Humanos , Estudos Prospectivos , Software , Comunicação
10.
J Neurosci ; 32(49): 17714-24, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23223292

RESUMO

Evolving evidence suggests that brain inflammation and the buildup of proinflammatory cytokine increases the risk for cognitive decline and cognitive dysfunction. Interleukin-1ß (IL-1ß), acting via poorly understood mechanisms, appears to be a key cytokine in causing these deleterious effects along with a presumably related loss of long-term potentiation (LTP)-type synaptic plasticity. We hypothesized that IL-1ß disrupts brain-derived neurotrophic factor (BDNF) signaling cascades and thereby impairs the formation of filamentous actin (F-actin) in dendritic spines, an event that is essential for the stabilization of LTP. Actin polymerization in spines requires phosphorylation of the filament severing protein cofilin and is modulated by expression of the immediate early gene product Arc. Using rat organotypic hippocampal cultures, we found that IL-1ß suppressed BDNF-dependent regulation of Arc and phosphorylation of cofilin and cAMP response element-binding protein (CREB), a transcription factor regulating Arc expression. IL-1ß appears to act on BDNF signal transduction by impairing the phosphorylation of insulin receptor substrate 1, a protein that couples activation of the BDNF receptor TrkB to downstream signaling pathways regulating CREB, Arc, and cofilin. IL-1ß upregulated p38 mitogen-activated protein kinase (MAPK), and inhibiting p38 MAPK prevented IL-1ß from disrupting BDNF signaling. IL-1ß also prevented the formation of F-actin in spines and impaired the consolidation, but not the induction, of BDNF-dependent LTP in acute hippocampal slices. The suppressive effect of IL-1ß on F-actin and LTP was prevented by inhibiting p38 MAPK. These findings define a new mechanism for the action of IL-1ß on LTP and point to a potential therapeutic target to restore synaptic plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Interleucina-1beta/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Actinas/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Cofilina 1/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/biossíntese , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica/fisiologia , Hipocampo/fisiologia , Interleucina-1beta/farmacologia , Potenciação de Longa Duração/fisiologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36747692

RESUMO

Objective: To conduct a retrospective analysis comparing traditional human-based consenting to an automated chat-based consenting process. Materials and Methods: We developed a new chat-based consent using our IRB-approved consent forms. We leveraged a previously developed platform (GiaⓇ, or "Genetic Information Assistant") to deliver the chat content to candidate participants. The content included information about the study, educational information, and a quiz to assess understanding. We analyzed 144 families referred to our study during a 6-month time period. A total of 37 families completed consent using the traditional process, while 35 families completed consent using Gia. Results: Engagement rates were similar between both consenting methods. The median length of the consent conversation was shorter for Gia users compared to traditional (44 vs. 76 minutes). Additionally, the total time from referral to consent completion was faster with Gia (5 vs. 16 days). Within Gia, understanding was assessed with a 10-question quiz that most participants (96%) passed. Feedback about the chat consent indicated that 86% of participants had a positive experience. Discussion: Using Gia resulted in time savings for both the participant and study staff. The chatbot enables studies to reach more potential candidates. We identified five key features related to human-centered design for developing a consent chat. Conclusion: This analysis suggests that it is feasible to use an automated chatbot to scale obtaining informed consent for a genomics research study. We further identify a number of advantages when using a chatbot.

12.
J Exp Med ; 195(8): 1003-12, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11956291

RESUMO

Proteins of the nuclear factor of activated T cells (NFAT) family of transcription factors are critical for lymphocyte activation in the immune system. In particular, NFATs are important regulators of inducible IL-4 gene expression. Interferon regulatory factor 4 (IRF4) is an immune system-restricted interferon regulatory factor that is required for lymphocyte activation, but its molecular functions in the T lineage remain to be elucidated. We demonstrate that IRF4 potently synergizes with NFATc2 to specifically enhance NFATc2-driven transcriptional activation of the IL-4 promoter. This function is dependent on the physical interaction of IRF4 with NFATc2. IRF4 synergizes with NFATc2 and the IL-4-inducing transcription factor, c-maf, to augment IL-4 promoter activity as well as to elicit significant levels of endogenous IL-4 production. Furthermore, naïve T helper cells from mice lacking IRF4 are compromised severely for the production of IL-4 and other Th2 cytokines. The identification of IRF4 as a partner for NFATc2 in IL-4 gene regulation provides an important molecular function for IRF4 in T helper cell differentiation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interleucina-4/genética , Proteínas Nucleares , Fatores de Transcrição/metabolismo , Ativação Transcricional , Animais , Sítios de Ligação , Diferenciação Celular , Linhagem Celular Transformada , Proteínas de Ligação a DNA/genética , Humanos , Fatores Reguladores de Interferon , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-maf , Células Th2/citologia , Fatores de Transcrição/genética , Células Tumorais Cultivadas
13.
Exp Cell Res ; 315(6): 996-1007, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19272320

RESUMO

Regions of heterochromatin are often found at the periphery of the mammalian nucleus, juxtaposed to the nuclear lamina. Genes in these regions are likely maintained in a transcriptionally silent state, although other locations at the nuclear periphery associated with nuclear pores are sites of active transcription. As primary components of the nuclear lamina, A- and B-type nuclear lamins are intermediate filament proteins that interact with DNA, histones and known transcriptional repressors, leading to speculation that they may promote establishment of repressive domains. However, no direct evidence of a role for nuclear lamins in transcriptional repression has been reported. Here we find that human lamin A, when expressed in yeast and cultured human cells as a fusion protein to the Gal4 DNA-binding domain (DBD), can mediate robust transcriptional repression of promoters with Gal4 binding sites. Full repression by lamin A requires both the coiled-coil rod domain and the C-terminal tail domain. In human cells, other intermediate filament proteins such as lamin B and vimentin are unable to confer robust repression as Gal4-DBD fusions, indicating that this property is specific to A-type nuclear lamins. These findings indicate that A-type lamins can promote transcriptional repression when in proximity of a promoter.


Assuntos
Núcleo Celular/metabolismo , Lamina Tipo A/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Transcrição Gênica , Linhagem Celular , Regulação da Expressão Gênica , Genes Reporter , Humanos , Lamina Tipo A/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Técnicas do Sistema de Duplo-Híbrido , Vimentina/genética , Vimentina/metabolismo
14.
Eur J Hum Genet ; 28(10): 1422-1431, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32483341

RESUMO

There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 (CHD3), now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype. We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain. All patients were detected with unbiased molecular genetic methods. There is not a significant difference in the clinical or facial features of patients with variants in or outside this domain. These additional patients further expand the clinical and molecular data associated with CHD3 variants. Importantly we conclude that there is not a significant difference in the phenotypic features of patients with various molecular disruptions, including whole gene deletions and duplications, and missense variants outside the ATPase/helicase domain. This data will aid both clinical geneticists and molecular geneticists in the diagnosis of this emerging syndrome.


Assuntos
Anormalidades Craniofaciais/genética , DNA Helicases/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Adolescente , Adulto , Domínio Catalítico , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , DNA Helicases/química , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Mutação , Fenótipo , Síndrome
15.
ACS Chem Neurosci ; 10(3): 1197-1203, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30695637

RESUMO

In rodent hippocampus, the inflammatory cytokine interleukin-1ß (IL-1ß) impairs memory and long-term potentiation (LTP), a major form of plasticity that depends on protein synthesis. A better understanding of the mechanisms by which IL-1ß impairs LTP may help identify targets for preventing cognitive deterioration. We tested whether IL-1ß inhibits protein synthesis in hippocampal neuron cultures following chemically induced LTP (cLTP). Fluorescent-tagging using click-chemistry showed that IL-1ß reduces the level of newly synthesized proteins in proximal dendrites of cLTP stimulated neurons. Relative to controls, in cLTP stimulated neurons, IL-1ß inhibited Akt/mTOR signaling, as well as the upregulation of GluA1, an AMPA receptor subunit, and LIMK1, a kinase that promotes actin polymerization. Notably, a novel TIR domain peptidomimetic (EM163) blocked both the activation of p38 and the suppression of cLTP-dependent protein synthesis by IL-1ß. Our data support a model where IL-1ß suppresses LTP directly in neurons by inhibiting mTOR-dependent translation.


Assuntos
Dendritos/metabolismo , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Potenciação de Longa Duração/fisiologia , Biossíntese de Proteínas/fisiologia , Animais , Células Cultivadas , Dendritos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ratos Sprague-Dawley
16.
Mol Genet Genomic Med ; 7(5): e630, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30900393

RESUMO

BACKGROUND: Advances in sequencing technology have led to expanded use of multi-gene panel tests (MGPTs) for clinical diagnostics. Well-designed MGPTs must balance increased detection of clinically significant findings while mitigating the increase in variants of uncertain significance (VUS). To maximize clinical utililty, design of such panels should include comprehensive gene vetting using a standardized clinical validity (CV) scoring system. METHODS: To assess the impact of CV-based gene vetting on MGPT results, data from MGPTs for cardiovascular indications were retrospectively analyzed. Using our CV scoring system, genes were categorized as having definitive, strong, moderate, or limited evidence. The rates of reported pathogenic or likely pathogenic variants and VUS were then determined for each CV category. RESULTS: Of 106 total genes, 42% had definitive, 17% had strong, 29% had moderate, and 12% had limited CV. The detection rate of variants classified as pathogenic or likely pathogenic was higher for genes with greater CV, while the VUS rate showed an inverse relationship with CV score. No pathogenic or likely pathogenic findings were observed in genes with a limited CV. CONCLUSION: These results demonstrate the importance of a standardized, evidence-based vetting process to establish CV for genes on MGPTs. Using our proposed system may help to increase the detection rate while mitigating higher VUS rates.


Assuntos
Predisposição Genética para Doença , Testes Genéticos/métodos , Testes Genéticos/normas , Humanos , Herança Multifatorial
18.
Sci Rep ; 9(1): 8011, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142749

RESUMO

The three-dimensional organization of the genome in mammalian interphase nuclei is intrinsically linked to the regulation of gene expression. Whole chromosome territories and their encoded gene loci occupy preferential positions within the nucleus that changes according to the expression profile of a given cell lineage or stage. To further illuminate the relationship between chromosome organization, epigenetic environment, and gene expression, here we examine the functional organization of chromosome X and corresponding X-linked genes in a variety of healthy human and disease state X diploid (XX) cells. We observe high frequencies of homologous chromosome X colocalization (or coalescence), typically associated with initiation of X-chromosome inactivation, occurring in XX cells outside of early embryogenesis. Moreover, during chromosome X coalescence significant changes in Xist, H3K27me3, and X-linked gene expression occur, suggesting the potential exchange of gene regulatory information between the active and inactive X chromosomes. We also observe significant differences in chromosome X coalescence in disease-implicated lymphocytes isolated from systemic lupus erythematosus (SLE) patients compared to healthy controls. These results demonstrate that X chromosomes can functionally interact outside of embryogenesis when X inactivation is initiated and suggest a potential gene regulatory mechanism aberration underlying the increased frequency of autoimmunity in XX individuals.


Assuntos
Mecanismo Genético de Compensação de Dose/genética , Lúpus Eritematoso Sistêmico/genética , RNA Longo não Codificante/genética , Cromossomo X/genética , Animais , Núcleo Celular/genética , Diploide , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Ligados ao Cromossomo X , Humanos , Lúpus Eritematoso Sistêmico/patologia , Masculino , Inativação do Cromossomo X/genética
19.
BMC Dev Biol ; 8: 49, 2008 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-18457595

RESUMO

BACKGROUND: Dietary restriction (DR) increases life span and delays age-associated disease in many organisms. The mechanism by which DR enhances longevity is not well understood. RESULTS: Using bacterial food deprivation as a means of DR in C. elegans, we show that transient DR confers long-term benefits including stress resistance and increased longevity. Consistent with studies in the fruit fly and in mice, we demonstrate that DR also enhances survival when initiated late in life. DR by bacterial food deprivation significantly increases life span in worms when initiated as late as 24 days of adulthood, an age at which greater than 50% of the cohort have died. These survival benefits are, at least partially, independent of food consumption, as control fed animals are no longer consuming bacterial food at this advanced age. Animals separated from the bacterial lawn by a barrier of solid agar have a life span intermediate between control fed and food restricted animals. Thus, we find that life span extension from bacterial deprivation can be partially suppressed by a diffusible component of the bacterial food source, suggesting a calorie-independent mechanism for life span extension by dietary restriction. CONCLUSION: Based on these findings, we propose that dietary restriction by bacterial deprivation increases longevity in C. elegans by a combination of reduced food consumption and decreased food sensing.


Assuntos
Bactérias , Caenorhabditis elegans/fisiologia , Restrição Calórica , Longevidade/fisiologia , Animais , Meios de Cultivo Condicionados , Privação de Alimentos/fisiologia , Microbiologia de Alimentos , Longevidade/genética
20.
Gend Genome ; 2(1): 2-7, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30899898

RESUMO

Sex chromosome gene dosage compensation is required to ensure equivalent levels of X-linked gene expression between males (46, XY) and females (46, XX). To achieve similar expression, X-chromosome inactivation (XCI) is initiated in female cells during early stages of embryogenesis. Within each cell, either the maternal or paternal X chromosome is selected for whole chromosome transcriptional silencing, which is initiated and maintained by epigenetic and chromatin conformation mechanisms. With the emergence of small-molecule epigenetic inhibitors for the treatment of disease, such as cancer, the epigenetic mechanism underlying XCI may be inadvertently targeted. Here, we test 2 small-molecule epigenetic inhibitors being used clinically, GSK126 (a histone H3 lysine 27 methyltransferase inhibitor) and suberoylanilide hydroxamic acid (a histone deacetylase inhibitor), on their effects of the inactive X (Xi) in healthy human female fibroblasts. The combination of these modifiers, at subcancer therapeutic levels, leads to the inability to detect the repressive H3K27me3 modification characteristic of XCI in the majority of the cells. Importantly, genes positioned near the X-inactivation center (Xic), where inactivation is initiated, exhibit robust expression with treatment of the inhibitors, while genes located near the distal ends of the X chromosome intriguingly exhibit significant downregulation. These results demonstrate that small-molecule epigenetic inhibitors can have profound consequences on XCI in human cells, and they underscore the importance of considering gender when developing and clinically testing small-molecule epigenetic inhibitors, in particular those that target the well-characterized mechanisms of X inactivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA