Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 24(9): 607-632, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37225892

RESUMO

Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.


Assuntos
Epigênese Genética , Exercício Físico , Exercício Físico/fisiologia , Adaptação Fisiológica/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo
2.
Brain Behav Immun ; 120: 121-140, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777288

RESUMO

BACKGROUND: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS: Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS: RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS: Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.

3.
Epilepsia ; 65(1): 9-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914406

RESUMO

Although animal models have helped to elaborate meaningful hypotheses about the pathophysiology of sudden and unexpected death in epilepsy (SUDEP), specific prevention strategies are still lacking, potentially reflecting the limitations of these models and the intrinsic difficulties of investigating SUDEP. The interpretation of preclinical data and their translation to diagnostic and therapeutic developments in patients thus require a high level of confidence in their relevance to model the human situation. Preclinical models of SUDEP are heterogeneous and include rodent and nonrodent species. A critical aspect is whether the animals have isolated seizures exclusively induced by a specific trigger, such as models where seizures are elicited by electrical stimulation, pharmacological intervention, or DBA mouse strains, or whether they suffer from epilepsy with spontaneous seizures, with or without spontaneous SUDEP, either of nongenetic epilepsy etiology or from genetically based developmental and epileptic encephalopathies. All these models have advantages and potential disadvantages, but it is important to be aware of these limitations to interpret data appropriately in a translational perspective. The majority of models with spontaneous seizures are of a genetic basis, whereas SUDEP cases with a genetic basis represent only a small proportion of the total number. In almost all models, cardiorespiratory arrest occurs during the course of the seizure, contrary to that in patients observed at the time of death, potentially raising the issue of whether we are studying models of SUDEP or models of periseizure death. However, some of these limitations are impossible to avoid and can in part be dependent on specific features of SUDEP, which may be difficult to model. Several preclinical tools are available to address certain gaps in SUDEP pathophysiology, which can be used to further validate current preclinical models.


Assuntos
Epilepsia , Morte Súbita Inesperada na Epilepsia , Camundongos , Animais , Humanos , Morte Súbita Inesperada na Epilepsia/etiologia , Camundongos Endogâmicos DBA , Convulsões , Morte Súbita/etiologia , Morte Súbita/prevenção & controle
4.
Epilepsia ; 65(7): e125-e130, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38738911

RESUMO

Because of its involvement in breathing control and neuronal excitability, dysregulation of the serotonin (5-HT) 2C receptor (5-HT2C) might play a key role in sudden unexpected death in epilepsy. Seizure-induced respiratory arrest is thus prevented by a 5-HT2B/C agonist in different seizure model. However, the specific contribution of 5-HT2C in chronic epilepsy-related respiratory dysfunction remains unknown. In a rat model of temporal lobe epilepsy (EPI rats), in which we previously reported interictal respiratory dysfunctions and a reduction of brainstem 5-HT tone, quantitative reverse transcriptase polymerase chain reaction showed overexpression of TPH2 (5-HT synthesis enzyme), SERT (5-HT reuptake transporter), and 5-HT2C transcript levels in the brainstem of EPI rats, and of RNA-specific adenosine deaminase (ADAR1, ADAR2) involved in the production of 5-HT2C isoforms. Interictal ventilation was assessed with whole-body plethysmography before and 2 h after administration of SB242084 (2 mg/kg), a specific antagonist of 5-HT2C. As expected, SB242084 administration induced a progressive decrease in ventilatory parameters and an alteration of breathing stability in both control and EPI rats. However, the size of the SB242084 effect was lower in EPI rats than in controls. Increased 5-HT2C gene expression in the brainstem of EPI rats could be part of a compensatory mechanism against epilepsy-related low 5-HT tone and expression of 5-HT2C isoforms for which 5-HT affinity might be lower.


Assuntos
Tronco Encefálico , Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Receptor 5-HT2C de Serotonina , Animais , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Ratos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/metabolismo , Tronco Encefálico/metabolismo , Tronco Encefálico/efeitos dos fármacos , Masculino , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Indóis/farmacologia , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Aminopiridinas , Tiofenos
5.
Exp Cell Res ; 433(2): 113820, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879549

RESUMO

The Warburg effect links growth and glycolysis in cancer. A key purpose of the Warburg effect is to generate glycolytic intermediates for anabolic reactions, such as nucleotides → RNA/DNA and amino acids → protein synthesis. The aim of this study was to investigate whether a similar 'glycolysis-for-anabolism' metabolic reprogramming also occurs in hypertrophying skeletal muscle. To interrogate this, we first induced C2C12 myotube hypertrophy with IGF-1. We then added 14C glucose to the differentiation medium and measured radioactivity in isolated protein and RNA to establish whether 14C had entered anabolism. We found that especially protein became radioactive, suggesting a glucose → glycolytic intermediates → non-essential amino acid(s) → protein series of reactions, the rate of which was increased by IGF-1. Next, to investigate the importance of glycolytic flux and non-essential amino acid synthesis for myotube hypertrophy, we exposed C2C12 and primary mouse myotubes to the glycolysis inhibitor 2-Deoxy-d-glucose (2DG). We found that inhibiting glycolysis lowered C2C12 and primary myotube size. Similarly, siRNA silencing of PHGDH, the key enzyme of the serine biosynthesis pathway, decreased C2C12 and primary myotube size; whereas retroviral PHGDH overexpression increased C2C12 myotube size. Together these results suggest that glycolysis is important for hypertrophying myotubes, which reprogram their metabolism to facilitate anabolism, similar to cancer cells.


Assuntos
Fator de Crescimento Insulin-Like I , Neoplasias , Animais , Camundongos , Fator de Crescimento Insulin-Like I/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Neoplasias/metabolismo , RNA/metabolismo , Hipertrofia/metabolismo , Glucose/farmacologia , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoácidos/farmacologia
6.
Am J Physiol Endocrinol Metab ; 324(4): E289-E298, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36812387

RESUMO

Succinate is released by skeletal muscle during exercise and activates SUCNR1/GPR91. Signaling of SUCNR1 is involved in metabolite-sensing paracrine communication in skeletal muscle during exercise. However, the specific cell types responding to succinate and the directionality of communication are unclear. We aim to characterize the expression of SUCNR1 in human skeletal muscle. De novo analysis of transcriptomic datasets demonstrated that SUCNR1 mRNA is expressed in immune, adipose, and liver tissues, but scarce in skeletal muscle. In human tissues, SUCNR1 mRNA was associated with macrophage markers. Single-cell RNA sequencing and fluorescent RNAscope demonstrated that in human skeletal muscle, SUCNR1 mRNA is not expressed in muscle fibers but coincided with macrophage populations. Human M2-polarized macrophages exhibit high levels of SUCNR1 mRNA and stimulation with selective agonists of SUCNR1 triggered Gq- and Gi-coupled signaling. Primary human skeletal muscle cells were unresponsive to SUCNR1 agonists. In conclusion, SUCNR1 is not expressed in muscle cells and its role in the adaptive response of skeletal muscle to exercise is most likely mediated via paracrine mechanisms involving M2-like macrophages within the muscle.NEW & NOTEWORTHY Macrophages but not skeletal muscle cells respond to extracellular succinate via SUCNR1/GPR91.


Assuntos
Receptores Acoplados a Proteínas G , Ácido Succínico , Humanos , Músculos/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Ácido Succínico/metabolismo
7.
Epilepsia ; 64(2): 511-523, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36507708

RESUMO

OBJECTIVE: The P2X7 receptor (P2X7R) is an important contributor to neuroinflammation, responding to extracellularly released adenosine triphosphate. Expression of the P2X7R is increased in the brain in experimental and human epilepsy, and genetic or pharmacologic targeting of the receptor can reduce seizure frequency and severity in preclinical models. Experimentally induced seizures also increase levels of the P2X7R in blood. Here, we tested 18 F-JNJ-64413739, a positron emission tomography (PET) P2X7R antagonist, as a potential noninvasive biomarker of seizure-damage and epileptogenesis. METHODS: Status epilepticus was induced via an intra-amygdala microinjection of kainic acid. Static PET studies (30 min duration, initiated 30 min after tracer administration) were conducted 48 h after status epilepticus via an intravenous injection of 18 F-JNJ-64413739. PET images were coregistered with a brain magnetic resonance imaging atlas, tracer uptake was determined in the different brain regions and peripheral organs, and values were correlated to seizure severity during status epilepticus. 18 F-JNJ-64413739 was also applied to ex vivo human brain slices obtained following surgical resection for intractable temporal lobe epilepsy. RESULTS: P2X7R radiotracer uptake correlated strongly with seizure severity during status epilepticus in brain structures including the cerebellum and ipsi- and contralateral cortex, hippocampus, striatum, and thalamus. In addition, a correlation between radiotracer uptake and seizure severity was also evident in peripheral organs such as the heart and the liver. Finally, P2X7R radiotracer uptake was found elevated in brain sections from patients with temporal lobe epilepsy when compared to control. SIGNIFICANCE: Taken together, our data suggest that P2X7R-based PET imaging may help to identify seizure-induced neuropathology and temporal lobe epilepsy patients with increased P2X7R levels possibly benefitting from P2X7R-based treatments.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Camundongos , Humanos , Masculino , Animais , Epilepsia do Lobo Temporal/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/metabolismo , Convulsões/tratamento farmacológico
8.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216493

RESUMO

Epilepsy is one of the most common chronic diseases of the central nervous system (CNS). Treatment of epilepsy remains, however, a clinical challenge with over 30% of patients not responding to current pharmacological interventions. Complicating management of treatment, epilepsy comes with multiple comorbidities, thereby further reducing the quality of life of patients. Increasing evidence suggests purinergic signalling via extracellularly released ATP as shared pathological mechanisms across numerous brain diseases. Once released, ATP activates specific purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Among brain diseases, the P2X7R has attracted particular attention as a therapeutic target. The P2X7R is an important driver of inflammation, and its activation requires high levels of extracellular ATP to be reached under pathological conditions. Suggesting the therapeutic potential of drugs targeting the P2X7R for epilepsy, P2X7R expression increases following status epilepticus and during epilepsy, and P2X7R antagonism modulates seizure severity and epilepsy development. P2X7R antagonism has, however, also been shown to be effective in treating conditions most commonly associated with epilepsy such as psychiatric disorders and cognitive deficits, which suggests that P2X7R antagonisms may provide benefits beyond seizure control. This review summarizes the evidence suggesting drugs targeting the P2X7R as a novel treatment strategy for epilepsy with a particular focus of its potential impact on epilepsy-associated comorbidities.


Assuntos
Epilepsia/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Convulsões/metabolismo , Animais , Hipocampo/metabolismo , Humanos , Inflamação/metabolismo , Transdução de Sinais/fisiologia
9.
Am J Physiol Endocrinol Metab ; 321(2): E203-E216, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34151582

RESUMO

We aimed to determine whether interrupting prolonged sitting improves glycemic control and the metabolic profile of free-living adults with obesity. Sixteen sedentary individuals {10 women/6 men; median [interquartile range (IQR)] age 50 (44-53) yr, body mass index (BMI) 32 (32-35.8) kg/m2} were fitted with continuous glucose and activity monitors for 4 wk. After a 1-wk baseline period, participants were randomized into habitual lifestyle (Control) or frequent activity breaks from sitting (FABS) intervention groups. Each day, between 0800 and 1800 h, FABS received smartwatch notifications to break sitting with 3 min of low-to-moderate-intensity physical activity every 30 min. Glycemic control was assessed by oral glucose tolerance test (OGTT) and continuous glucose monitoring. Blood samples and vastus lateralis biopsies were taken for assessment of clinical chemistry and the skeletal muscle lipidome, respectively. Compared with baseline, FABS increased median steps by 744 [IQR (483-951)] and walking time by 10.4 [IQR (2.2-24.6)] min/day. Other indices of activity/sedentary behavior were unchanged. Glucose tolerance and average 24-h glucose curves were also unaffected. However, mean (±SD) fasting glucose levels [-0.34 (±0.37) mmol/L] and daily glucose variation [%CV; -2% (±2.2%)] reduced in FABS, suggesting a modest benefit for glycemic control that was most robust at higher volumes of daily activity. Clinical chemistry and the skeletal muscle lipidome were largely unperturbed, although two long-chain triglycerides increased 1.25-fold in FABS, postintervention. All parameters remained stable in control. Under free-living conditions, FABS lowered fasting glucose and glucose variability. Larger volumes of activity breaks from sitting may be required to promote greater health benefits.NEW & NOTEWORTHY Under free-living conditions, breaking sitting modestly increased activity behavior. Breaking sitting was insufficient to modulate glucose tolerance or the skeletal muscle lipidome. Activity breaks reduced fasting blood glucose levels and daily glucose variation compared with baseline, with a tendency to also decrease fasting LDLc. This intervention may represent the minimal dose for breaking sedentary behavior, with larger volumes of activity possibly required to promote greater health benefits.


Assuntos
Glucose/metabolismo , Obesidade/metabolismo , Comportamento Sedentário , Postura Sentada , Adulto , Jejum , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade
10.
Am J Physiol Cell Physiol ; 318(3): C615-C626, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31825657

RESUMO

Rat L6, mouse C2C12, and primary human skeletal muscle cells (HSMCs) are commonly used to study biological processes in skeletal muscle, and experimental data on these models are abundant. However, consistently matched experimental data are scarce, and comparisons between the different cell types and adult tissue are problematic. We hypothesized that metabolic differences between these cellular models may be reflected at the mRNA level. Publicly available data sets were used to profile mRNA levels in myotubes and skeletal muscle tissues. L6, C2C12, and HSMC myotubes were assessed for proliferation, glucose uptake, glycogen synthesis, mitochondrial activity, and substrate oxidation, as well as the response to in vitro contraction. Transcriptomic profiling revealed that mRNA of genes coding for actin and myosin was enriched in C2C12, whereas L6 myotubes had the highest levels of genes encoding glucose transporters and the five complexes of the mitochondrial electron transport chain. Consistently, insulin-stimulated glucose uptake and oxidative capacity were greatest in L6 myotubes. Insulin-induced glycogen synthesis was highest in HSMCs, but C2C12 myotubes had higher baseline glucose oxidation. All models responded to electrical pulse stimulation-induced glucose uptake and gene expression but in a slightly different manner. Our analysis reveals a great degree of heterogeneity in the transcriptomic and metabolic profiles of L6, C2C12, or primary human myotubes. Based on these distinct signatures, we provide recommendations for the appropriate use of these models depending on scientific hypotheses and biological relevance.


Assuntos
Metabolismo Energético/fisiologia , Perfilação da Expressão Gênica/métodos , Células Musculares/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Transcriptoma/fisiologia , Adulto , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/citologia , Ratos , Especificidade da Espécie
11.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105750

RESUMO

Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.


Assuntos
Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Convulsões/etiologia , Convulsões/terapia , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Humanos , Hipotermia Induzida/métodos , Lactente , Recém-Nascido , Terapia de Alvo Molecular , Antagonistas do Receptor Purinérgico P2/farmacologia , Purinas/metabolismo , Convulsões/tratamento farmacológico
12.
Diabetologia ; 62(2): 233-237, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30426166

RESUMO

AIMS/HYPOTHESIS: Exercise is recommended for the treatment and prevention of type 2 diabetes. However, the most effective time of day to achieve beneficial effects on health remains unknown. We aimed to determine whether exercise training at two distinct times of day would have differing effects on 24 h blood glucose levels in men with type 2 diabetes. METHODS: Eleven men with type 2 diabetes underwent a randomised crossover trial. Inclusion criteria were 45-68 years of age and BMI between 23 and 33 kg/m2. Exclusion criteria were insulin treatment and presence of another systemic illness. Researchers were not blinded to the group assignment. The trial involved 2 weeks of either morning or afternoon high-intensity interval training (HIIT) (three sessions/week), followed by a 2 week wash-out period and a subsequent period of the opposite training regimen. Continuous glucose monitor (CGM)-based data were obtained. RESULTS: Morning HIIT increased CGM-based glucose concentration (6.9 ± 0.4 mmol/l; mean ± SEM for the exercise days during week 1) compared with either the pre-training period (6.4 ± 0.3 mmol/l) or afternoon HIIT (6.2 ± 0.3 mmol/l for the exercise days during week 1). Conversely, afternoon HIIT reduced the CGM-based glucose concentration compared with either the pre-training period or morning HIIT. Afternoon HIIT was associated with elevated thyroid-stimulating hormone (TSH; 1.9 ± 0.2 mU/l) and reduced T4 (15.8 ± 0.7 pmol/l) concentrations compared with pre-training (1.4 ± 0.2 mU/l for TSH; 16.8 ± 0.6 pmol/l for T4). TSH was also elevated after morning HIIT (1.7 ± 0.2 mU/l), whereas T4 concentrations were unaltered. CONCLUSIONS/INTERPRETATION: Afternoon HIIT was more efficacious than morning HIIT at improving blood glucose in men with type 2 diabetes. Strikingly, morning HIIT had an acute, deleterious effect, increasing blood glucose. However, studies of longer training regimens are warranted to establish the persistence of this adverse effect. Our data highlight the importance of optimising the timing of exercise when prescribing it as treatment for type 2 diabetes.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2/sangue , Exercício Físico/fisiologia , Estudos Cross-Over , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Resultado do Tratamento
14.
BMC Genomics ; 15: 334, 2014 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-24885798

RESUMO

BACKGROUND: Tomato (Solanum lycopersicum), one of the world's most important vegetable crops, is highly susceptible to necrotrophic fungal pathogens such as Botrytis cinerea and Alternaria solani. Improving resistance through conventional breeding has been hampered by a shortage of resistant germplasm and difficulties in introgressing resistance into elite germplasm without linkage drag. The goal of this study was to explore natural variation among wild Solanum species to identify new sources of resistance to necrotrophic fungi and dissect mechanisms underlying resistance against B. cinerea. RESULTS: Among eight wild species evaluated for resistance against B. cinerea and A. solani, S. lycopersicoides expressed the highest levels of resistance against both pathogens. Resistance against B. cinerea manifested as containment of pathogen growth. Through next-generation RNA sequencing and de novo assembly of the S. lycopersicoides transcriptome, changes in gene expression were analyzed during pathogen infection. In response to B. cinerea, differentially expressed transcripts grouped into four categories: genes whose expression rapidly increased then rapidly decreased, genes whose expression rapidly increased and plateaued, genes whose expression continually increased, and genes with decreased expression. Homology-based searches also identified a limited number of highly expressed B. cinerea genes. Almost immediately after infection by B. cinerea, S. lycopersicoides suppressed photosynthesis and metabolic processes involved in growth, energy generation, and response to stimuli, and simultaneously induced various defense-related genes, including pathogenesis-related protein 1 (PR1), a beta-1,3-glucanase (glucanase), and a subtilisin-like protease, indicating a shift in priority towards defense. Moreover, cluster analysis revealed novel, uncharacterized genes that may play roles in defense against necrotrophic fungal pathogens in S. lycopersicoides. The expression of orthologous defense-related genes in S. lycopersicum after infection with B. cinerea revealed differences in the onset and intensity of induction, thus illuminating a potential mechanism explaining the increased susceptibility. Additionally, metabolic pathway analyses identified putative defense-related categories of secondary metabolites. CONCLUSIONS: In sum, this study provided insight into resistance against necrotrophic fungal pathogens in the Solanaceae, as well as novel sequence resources for S. lycopersicoides.


Assuntos
Botrytis/patogenicidade , Farmacorresistência Fúngica/genética , Solanum/microbiologia , Transcrição Gênica , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética , Solanum/genética , Solanum/metabolismo
15.
Environ Microbiol ; 16(7): 2004-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24237664

RESUMO

Fusarium verticillioides produces fumonisin mycotoxins during colonization of maize. Currently, molecular mechanisms underlying responsiveness of F.verticillioides to extracellular cues during pathogenesis are poorly understood. In this study, insertional mutants were created and screened to identify genes involved in responses to extracellular starch. In one mutant, the restriction enzyme-mediated integration cassette disrupted a gene (UBL1) encoding a UBR-Box/RING domain E3 ubiquitin ligase involved in the N-end rule pathway. Disruption of UBL1 in F.verticillioides (Δubl1) influenced conidiation, hyphal morphology, pigmentation and amylolysis. Disruption of UBL1 also impaired kernel colonization, but the ratio of fumonisin B1 per unit growth was not significantly reduced. The inability of a Δubl1 mutant to recognize an N-end rule degron confirmed involvement of UBL1 in the N-end rule pathway. Additionally, Ubl1 physically interacted with two G protein α subunits of F.verticillioides, thus implicating UBL1 in G protein-mediated sensing of the external environment. Furthermore, deletion of the UBL1 orthologue in F.graminearum reduced virulence on wheat and maize, thus indicating that UBL1 has a broader role in virulence among Fusarium species. This study provides the first linkage between the N-end rule pathway and fungal pathogenesis, and illustrates a new mechanism through which fungi respond to the external environment.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Hifas/patogenicidade , Proteína SUMO-1/metabolismo , Amido/metabolismo , Fumonisinas/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Hifas/genética , Hifas/metabolismo , Mutagênese Insercional , Doenças das Plantas/microbiologia , Proteólise , Proteína SUMO-1/genética , Transdução de Sinais , Triticum/microbiologia , Virulência , Zea mays/microbiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38682559

RESUMO

BACKGROUND: The maintenance of skeletal muscle plasticity upon changes in the environment, nutrient supply, and exercise depends on regulatory mechanisms that couple structural and metabolic adaptations. The mechanisms that interconnect both processes at the transcriptional level remain underexplored. Nr2f6, a nuclear receptor, regulates metabolism and cell differentiation in peripheral tissues. However, its role in the skeletal muscle is still elusive. Here, we aimed to investigate the effects of Nr2f6 modulation on muscle biology in vivo and in vitro. METHODS: Global RNA-seq was performed in Nr2f6 knockdown C2C12 myocytes (N = 4-5). Molecular and metabolic assays and proliferation experiments were performed using stable Nr2f6 knockdown and Nr2f6 overexpression C2C12 cell lines (N = 3-6). Nr2f6 content was evaluated in lipid overload models in vitro and in vivo (N = 3-6). In vivo experiments included Nr2f6 overexpression in mouse tibialis anterior muscle, followed by gene array transcriptomics and molecular assays (N = 4), ex vivo contractility experiments (N = 5), and histological analysis (N = 7). The conservation of Nr2f6 depletion effects was confirmed in primary skeletal muscle cells of humans and mice. RESULTS: Nr2f6 knockdown upregulated genes associated with muscle differentiation, metabolism, and contraction, while cell cycle-related genes were downregulated. In human skeletal muscle cells, Nr2f6 knockdown significantly increased the expression of myosin heavy chain genes (two-fold to three-fold) and siRNA-mediated depletion of Nr2f6 increased maximal C2C12 myocyte's lipid oxidative capacity by 75% and protected against lipid-induced cell death. Nr2f6 content decreased by 40% in lipid-overloaded myotubes and by 50% in the skeletal muscle of mice fed a high-fat diet. Nr2f6 overexpression in mice resulted in an atrophic and hypoplastic state, characterized by a significant reduction in muscle mass (15%) and myofibre content (18%), followed by an impairment (50%) in force production. These functional phenotypes were accompanied by the establishment of an inflammation-like molecular signature and a decrease in the expression of genes involved in muscle contractility and oxidative metabolism, which was associated with the repression of the uncoupling protein 3 (20%) and PGC-1α (30%) promoters activity following Nr2f6 overexpression in vitro. Additionally, Nr2f6 regulated core components of the cell division machinery, effectively decoupling muscle cell proliferation from differentiation. CONCLUSIONS: Our findings reveal a novel role for Nr2f6 as a molecular transducer that plays a crucial role in maintaining the balance between skeletal muscle contractile function and oxidative capacity. These results have significant implications for the development of potential therapeutic strategies for metabolic diseases and myopathies.

17.
Plant Physiol ; 158(4): 2028-41, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22291202

RESUMO

We report here that disruption of function of the ω-3 FATTY ACID DESATURASE7 (FAD7) enhances plant defenses against aphids. The suppressor of prosystemin-mediated responses2 (spr2) mutation in tomato (Solanum lycopersicum), which eliminates the function of FAD7, reduces the settling behavior, survival, and fecundity of the potato aphid (Macrosiphum euphorbiae). Likewise, the antisense suppression of LeFAD7 expression in wild-type tomato plants reduces aphid infestations. Aphid resistance in the spr2 mutant is associated with enhanced levels of salicylic acid (SA) and mRNA encoding the pathogenesis-related protein P4. Introduction of the Naphthalene/salicylate hydroxylase transgene, which suppresses SA accumulation, restores wild-type levels of aphid susceptibility to spr2. Resistance in spr2 is also lost when we utilize virus-induced gene silencing to suppress the expression of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), a positive regulator of many SA-dependent defenses. These results indicate that FAD7 suppresses defenses against aphids that are mediated through SA and NPR1. Although loss of function of FAD7 also inhibits the synthesis of jasmonate (JA), the effects of this desaturase on aphid resistance are not dependent on JA; other mutants impaired in JA synthesis (acx1) or perception (jai1-1) show wild-type levels of aphid susceptibility, and spr2 retains aphid resistance when treated with methyl jasmonate. Thus, FAD7 may influence JA-dependent defenses against chewing insects and SA-dependent defenses against aphids through independent effects on JA synthesis and SA signaling. The Arabidopsis (Arabidopsis thaliana) mutants Atfad7-2 and Atfad7-1fad8 also show enhanced resistance to the green peach aphid (Myzus persicae) compared with wild-type controls, indicating that FAD7 influences plant-aphid interactions in at least two plant families.


Assuntos
Afídeos/fisiologia , Resistência à Doença/efeitos dos fármacos , Ácidos Graxos Dessaturases/metabolismo , Doenças das Plantas/parasitologia , Ácido Salicílico/farmacologia , Solanum lycopersicum/enzimologia , Solanum lycopersicum/imunologia , Acetatos/farmacologia , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/imunologia , Arabidopsis/parasitologia , Vias Biossintéticas/efeitos dos fármacos , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Mutação/genética , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Análise de Sobrevida , Transgenes/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
18.
Neurosci Biobehav Rev ; 150: 105226, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37164044

RESUMO

Despite low levels of cannabinoid receptor type 2 (CB2R) expression in the central nervous system in human and rodents, a growing body of evidence shows CB2R involvement in many processes at the behavioral level, through both immune and neuronal modulations. Recent in vitro and in vivo evidence have highlighted the complex role of CB2R under physiological and inflammatory conditions. Under neuroinflammatory states, its activation seems to protect the brain and its functions, making it a promising target in a wide range of neurological disorders. Here, we provide a complete and updated overview of CB2R function in the central nervous system of rodents, spanning from modulation of immune function in microglia but also in other cell types, to behavior and neuronal activity, in both physiological and neuroinflammatory contexts.


Assuntos
Sistema Nervoso Central , Receptor CB2 de Canabinoide , Humanos , Receptor CB2 de Canabinoide/metabolismo , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Microglia/metabolismo , Receptor CB1 de Canabinoide/metabolismo
19.
Br J Pharmacol ; 180(13): 1710-1729, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36637008

RESUMO

BACKGROUND AND PURPOSE: Neonatal seizures represent a clinical emergency. However, current anti-seizure medications fail to resolve seizures in ~50% of infants. The P2X7 receptor (P2X7R) is an important driver of inflammation, and evidence suggests that P2X7R contributes to seizures and epilepsy in adults. However, no genetic proof has yet been provided to determine what contribution P2X7R makes to neonatal seizures, its effects on inflammatory signalling during neonatal seizures, and the therapeutic potential of P2X7R-based treatments on long-lasting brain excitability. EXPERIMENTAL APPROACH: Neonatal seizures were induced by global hypoxia in 7-day-old mouse pups (P7). The role of P2X7Rs during seizures was analysed in P2X7R-overexpressing and knockout mice. Treatment of wild-type mice after hypoxia with the P2X7R antagonist JNJ-47965567 was used to determine the effects of the P2X7R on long-lasting brain hyperexcitability. Cell type-specific P2X7R expression was analysed in P2X7R-EGFP reporter mice. RNA sequencing was used to monitor P2X7R-dependent hippocampal downstream signalling. KEY RESULTS: P2X7R deletion reduced seizure severity, whereas P2X7R overexpression exacerbated seizure severity and reduced responsiveness to anti-seizure medication. P2X7R deficiency led to an anti-inflammatory phenotype in microglia, and treatment of mice with a P2X7R antagonist reduced long-lasting brain hyperexcitability. RNA sequencing identified several pathways altered in P2X7R knockout mice after neonatal hypoxia, including a down-regulation of genes implicated in inflammation and glutamatergic signalling. CONCLUSION AND IMPLICATIONS: Treatments based on targeting the P2X7R may represent a novel therapeutic strategy for neonatal seizures with P2X7Rs contributing to the generation of neonatal seizures, driving inflammatory processes and long-term hyperexcitability states.


Assuntos
Receptores Purinérgicos P2X7 , Convulsões , Animais , Camundongos , Animais Recém-Nascidos , Encéfalo/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Hipóxia/complicações , Inflamação/tratamento farmacológico , Camundongos Knockout , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Convulsões/metabolismo
20.
Sci Adv ; 8(36): eabo3192, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070371

RESUMO

Mechanistic insights into the molecular events by which exercise enhances the skeletal muscle phenotype are lacking, particularly in the context of type 2 diabetes. Here, we unravel a fundamental role for exercise-responsive cytokines (exerkines) on skeletal muscle development and growth in individuals with normal glucose tolerance or type 2 diabetes. Acute exercise triggered an inflammatory response in skeletal muscle, concomitant with an infiltration of immune cells. These exercise effects were potentiated in type 2 diabetes. In response to contraction or hypoxia, cytokines were mainly produced by endothelial cells and macrophages. The chemokine CXCL12 was induced by hypoxia in endothelial cells, as well as by conditioned medium from contracted myotubes in macrophages. We found that CXCL12 was associated with skeletal muscle remodeling after exercise and differentiation of cultured muscle. Collectively, acute aerobic exercise mounts a noncanonical inflammatory response, with an atypical production of exerkines, which is potentiated in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Exercício Físico , Inflamação , Quimiocina CXCL12 , Citocinas , Células Endoteliais , Humanos , Hipóxia , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA