Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Blood ; 140(20): 2154-2169, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-35981497

RESUMO

Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA sequencing to investigate the transcriptome of mouse brain endothelial cells with an inducible endothelial-specific Ccm3 knock-out (Ccm3-iECKO). We found that Ccm3-deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared with wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. We created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3 expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model, this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCMs. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Animais , Camundongos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Proteínas Reguladoras de Apoptose/genética , Tromboinflamação , Fator de von Willebrand/metabolismo , Hipóxia/metabolismo
2.
EMBO Rep ; 22(2): e50218, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369848

RESUMO

Cell signalling governs cellular behaviour and is therefore subject to tight spatiotemporal regulation. Signalling output is modulated by specialized cell membranes and vesicles which contain unique combinations of lipids and proteins. The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ), an important component of the plasma membrane as well as other subcellular membranes, is involved in multiple processes, including signalling. However, which enzymes control the turnover of non-plasma membrane PI(4,5)P2 , and their impact on cell signalling and function at the organismal level are unknown. Here, we identify Paladin as a vascular PI(4,5)P2 phosphatase regulating VEGFR2 endosomal signalling and angiogenesis. Paladin is localized to endosomal and Golgi compartments and interacts with vascular endothelial growth factor receptor 2 (VEGFR2) in vitro and in vivo. Loss of Paladin results in increased internalization of VEGFR2, over-activation of extracellular regulated kinase 1/2, and hypersprouting of endothelial cells in the developing retina of mice. These findings suggest that inhibition of Paladin, or other endosomal PI(4,5)P2 phosphatases, could be exploited to modulate VEGFR2 signalling and angiogenesis, when direct and full inhibition of the receptor is undesirable.


Assuntos
Neovascularização Fisiológica , Fosfatases de Fosfoinositídeos , Fosfoproteínas Fosfatases , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Células Endoteliais/metabolismo , Camundongos , Fosfatidilinositol 4,5-Difosfato , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Circulation ; 144(20): 1629-1645, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34636652

RESUMO

BACKGROUND: PALMD (palmdelphin) belongs to the family of paralemmin proteins implicated in cytoskeletal regulation. Single nucleotide polymorphisms in the PALMD locus that result in reduced expression are strong risk factors for development of calcific aortic valve stenosis and predict severity of the disease. METHODS: Immunodetection and public database screening showed dominant expression of PALMD in endothelial cells (ECs) in brain and cardiovascular tissues including aortic valves. Mass spectrometry, coimmunoprecipitation, and immunofluorescent staining allowed identification of PALMD partners. The consequence of loss of PALMD expression was assessed in small interferring RNA-treated EC cultures, knockout mice, and human valve samples. RNA sequencing of ECs and transcript arrays on valve samples from an aortic valve study cohort including patients with the single nucleotide polymorphism rs7543130 informed about gene regulatory changes. RESULTS: ECs express the cytosolic PALMD-KKVI splice variant, which associated with RANGAP1 (RAN GTP hydrolyase activating protein 1). RANGAP1 regulates the activity of the GTPase RAN and thereby nucleocytoplasmic shuttling via XPO1 (Exportin1). Reduced PALMD expression resulted in subcellular relocalization of RANGAP1 and XPO1, and nuclear arrest of the XPO1 cargoes p53 and p21. This indicates an important role for PALMD in nucleocytoplasmic transport and consequently in gene regulation because of the effect on localization of transcriptional regulators. Changes in EC responsiveness on loss of PALMD expression included failure to form a perinuclear actin cap when exposed to flow, indicating lack of protection against mechanical stress. Loss of the actin cap correlated with misalignment of the nuclear long axis relative to the cell body, observed in PALMD-deficient ECs, Palmd-/- mouse aorta, and human aortic valve samples derived from patients with calcific aortic valve stenosis. In agreement with these changes in EC behavior, gene ontology analysis showed enrichment of nuclear- and cytoskeleton-related terms in PALMD-silenced ECs. CONCLUSIONS: We identify RANGAP1 as a PALMD partner in ECs. Disrupting the PALMD/RANGAP1 complex alters the subcellular localization of RANGAP1 and XPO1, and leads to nuclear arrest of the XPO1 cargoes p53 and p21, accompanied by gene regulatory changes and loss of actin-dependent nuclear resilience. Combined, these consequences of reduced PALMD expression provide a mechanistic underpinning for PALMD's contribution to calcific aortic valve stenosis pathology.


Assuntos
Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Proteínas de Membrana/genética , Estresse Mecânico , Idoso , Animais , Comunicação Celular/genética , Linhagem Celular , Movimento Celular/genética , Células Cultivadas , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Ontologia Genética , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Transporte Proteico
5.
EMBO Rep ; 20(11): e47845, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31545012

RESUMO

Exaggerated signaling by vascular endothelial growth factor (VEGF)-A and its receptor, VEGFR2, in pathologies results in poor vessel function. Still, pharmacological suppression of VEGFA/VEGFR2 may aggravate disease. Delineating VEGFR2 signaling in vivo provides strategies for suppression of specific VEGFR2-induced pathways. Three VEGFR2 tyrosine residues (Y949, Y1212, and Y1173) induce downstream signaling. Here, we show that knock-in of phenylalanine to create VEGFR2 Y1212F in C57Bl/6 and FVB mouse strains leads to loss of growth factor receptor-bound protein 2- and phosphoinositide 3'-kinase (PI3K)p85 signaling. C57Bl/6 Vegfr2Y1212F/Y1212F show reduced embryonic endothelial cell (EC) proliferation and partial lethality. FVB Vegfr2Y1212F/Y1212F show reduced postnatal EC proliferation. Reduced EC proliferation in Vegfr2Y1212F/Y1212F explants is rescued by c-Myc overexpression. We conclude that VEGFR2 Y1212 signaling induces activation of extracellular-signal-regulated kinase (ERK)1/2 and Akt pathways required for c-Myc-dependent gene regulation, endothelial proliferation, and vessel stability.

7.
Elife ; 102021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908348

RESUMO

Background: Hypoxia and consequent production of vascular endothelial growth factor A (VEGFA) promote blood vessel leakiness and edema in ocular diseases. Anti-VEGFA therapeutics may aggravate hypoxia; therefore, therapy development is needed. Methods: Oxygen-induced retinopathy was used as a model to test the role of nitric oxide (NO) in pathological neovascularization and vessel permeability. Suppression of NO formation was achieved chemically using L-NMMA, or genetically, in endothelial NO synthase serine to alanine (S1176A) mutant mice. Results: Suppression of NO formation resulted in reduced retinal neoangiogenesis. Remaining vascular tufts exhibited reduced vascular leakage through stabilized endothelial adherens junctions, manifested as reduced phosphorylation of vascular endothelial (VE)-cadherin Y685 in a c-Src-dependent manner. Treatment with a single dose of L-NMMA in established retinopathy restored the vascular barrier and prevented leakage. Conclusions: We conclude that NO destabilizes adheren junctions, resulting in vascular hyperpermeability, by converging with the VEGFA/VEGFR2/c-Src/VE-cadherin pathway. Funding: This study was supported by the Swedish Cancer foundation (19 0119 Pj ), the Swedish Research Council (2020-01349), the Knut and Alice Wallenberg foundation (KAW 2020.0057) and a Fondation Leducq Transatlantic Network of Excellence Grant in Neurovascular Disease (17 CVD 03). KAW also supported LCW with a Wallenberg Scholar grant (2015.0275). WCS was supported by Grants R35 HL139945, P01 HL1070205, AHA MERIT Award. DV was supported by grants from the Deutsche Forschungsgemeinschaft, SFB1450, B03, and CRU342, P2.


Assuntos
Antígenos CD/química , Antígenos CD/metabolismo , Proteína Tirosina Quinase CSK/metabolismo , Caderinas/química , Caderinas/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Doenças Retinianas/enzimologia , Tirosina/metabolismo , Junções Aderentes/genética , Junções Aderentes/metabolismo , Motivos de Aminoácidos , Animais , Antígenos CD/genética , Proteína Tirosina Quinase CSK/genética , Caderinas/genética , Permeabilidade Capilar , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Elife ; 92020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32312382

RESUMO

Edema stemming from leaky blood vessels is common in eye diseases such as age-related macular degeneration and diabetic retinopathy. Whereas therapies targeting vascular endothelial growth factor A (VEGFA) can suppress leakage, side-effects include vascular rarefaction and geographic atrophy. By challenging mouse models representing different steps in VEGFA/VEGF receptor 2 (VEGFR2)-induced vascular permeability, we show that targeting signaling downstream of VEGFR2 pY949 limits vascular permeability in retinopathy induced by high oxygen or by laser-wounding. Although suppressed permeability is accompanied by reduced pathological neoangiogenesis in oxygen-induced retinopathy, similarly sized lesions leak less in mutant mice, separating regulation of permeability from angiogenesis. Strikingly, vascular endothelial (VE)-cadherin phosphorylation at the Y685, but not Y658, residue is reduced when VEGFR2 pY949 signaling is impaired. These findings support a mechanism whereby VE-cadherin Y685 phosphorylation is selectively associated with excessive vascular leakage. Therapeutically, targeting VEGFR2-regulated VE-cadherin phosphorylation could suppress edema while leaving other VEGFR2-dependent functions intact.


The number of people with impaired vision and blindness is increasing in Western society due to the aging population and the increased prevalence of diabetes. This has led to eye diseases, such as age-related macular degeneration and diabetic retinopathy becoming more common. In both these eye diseases, new blood vessels grow in the retina ­ the light-sensitive part of the eye ­ to bring oxygen and nutrients to the tissue. However, these new blood vessels are leaky and allow molecules to leave the bloodstream and enter the retinal tissue. This causes the retina to swell and impair a person's vision. The leaky blood supply also reduces the amount of oxygen that gets to the tissue, resulting in further damage to the retina. When tissues experience low levels of oxygen, cells start making a protein called vascular endothelial growth factor (or VEGF for short). Whilst this protein is important for helping form new blood vessels, it also makes these vessels leaky. Current treatments for age-related macular degeneration and diabetic retinopathy decrease swelling in the eye by blocking the action of VEGF. However, these treatments also cause existing blood vessels and nerve cells to die, leading to irreversible damage. Now, Smith et al. have set out to find whether the effects of VEGF can be blocked without causing further damage to existing cells. To investigate this possibility, the eyes and retinas of mice were treated with a laser or exposed to changing oxygen levels to create injuries that resembled human age-related macular degeneration and diabetic retinopathy. Each of the tested mice had specific mutations in proteins known to interact with VEGF. Fluorescent particles were injected into the bloodstream of the mice to assess how these different mutations affected blood vessel leakage: if fluorescent particles could no longer be detected outside the blood vessels, this suggested that the mutation had stopped the vessels from leaking. Further experiments showed these specific mutations affected leakage and did not prevent new blood vessels from forming. In the future it will be important to see if drugs, rather than mutations, can also decrease the leakiness of blood vessels in the retina. Such chemical compounds could then be tested in mouse experiments. If successful, these drugs might be used to treat patients with age-related macular degeneration and diabetic retinopathy.


Assuntos
Caderinas/metabolismo , Permeabilidade Capilar/fisiologia , Endotélio Vascular/metabolismo , Doenças Retinianas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Doenças Retinianas/patologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Transdução de Sinais/fisiologia
9.
EJHaem ; 1(1): 199-207, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35847718

RESUMO

Purpose: The abundant hepatocyte-expressed plasma protein histidine-rich glycoprotein (HRG) enhances antitumor immunity by polarizing inflammatory and immune cells in several mouse models, however, the clinical relevance of HRG in human cancer is poorly explored. The expression and role of HRG in human B-cell lymphomas was investigated in order to find new tools for prognosis and treatment. Findings: Immunohistochemical (IHC) analysis and RNA hybridization of tissue microarrays showed that (i) HRG was expressed by tumor cells in marginal zone lymphoma (MZL), in 36% of 59 cases. Expression was also detected in follicular lymphoma (22%), mantle cell lymphoma (19%), and indiffuse large B-cell lymphoma (DLBCL;5%) while primary CNS lymphoma (PCNSL) lacked expression of HRG. (ii) MZL patients positive for HRG showed a superior overall survival outcome (HR = 0.086, 95% CI = 0.014-0.518, P-value = .007), indicating a protective role for HRG independent of stage, age and sex. (iii) HRG-expressing MZL displayed significantly increased transcript and protein levels of the host defense peptide alpha defensin 1. In addition, global transcript analyses showed significant changes in gene ontology terms relating to immunity and inflammation, however, infiltration of immune and inflammatory cells detected by IHC was unaffected by HRG expression. Conclusion: HRG expression by MZL tumor cells correlates with an altered transcription profile and improved overall survival.

10.
J Neurosci ; 26(1): 241-5, 2006 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-16399693

RESUMO

Torpor, a controlled rapid drop in metabolic rate and body temperature (Tb), is a hypometabolic adaptation to stressful environmental conditions, which occurs in many small mammals, marsupials, and birds. To date, signaling pathways required for torpor have not been identified. We examined the role of the sympathetic nervous system (SNS) in mediating the torpor adaptation to fasting by telemetrically monitoring the Tb of dopamine beta-hydroxylase knock-out (Dbh-/-) mice, which lack the ability to produce the SNS transmitters, norepinephrine (NE), and epinephrine. Control (Dbh+/-) mice readily reduced serum leptin levels and entered torpor after a fast in a cool environment. In contrast, Dbh-/- mice failed to reduce serum leptin and enter torpor under fasting conditions, whereas restoration of peripheral but not central NE lowered serum leptin levels and rescued the torpor response. Torpor was expressed in fasted Dbh-/- mice immediately after administration of either the nonselective beta-adrenergic receptor agonist isoproterenol or the beta3-adrenergic receptor (AR)-specific agonist CL 316243 [disodium (RR)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1,3-benzodioxazole-2,2-dicarboxylate], but not after administration of beta1, beta2, or alpha1 agonists. Importantly, the beta3-specific antagonist SR 59230A [3-(2-ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol oxalate] severely blunted fasting-induced torpor in control mice, whereas other AR antagonists were ineffective. These results define a critical role of peripheral SNS activity at beta3-AR-containing tissues in the torpor adaptation to limited energy availability and cool ambient temperature.


Assuntos
Metabolismo Basal/fisiologia , Jejum/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores Adrenérgicos beta 3/biossíntese , Transdução de Sinais/fisiologia , Tecido Adiposo/metabolismo , Animais , Dopamina beta-Hidroxilase/deficiência , Dopamina beta-Hidroxilase/genética , Dopamina beta-Hidroxilase/fisiologia , Feminino , Leptina/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Adrenérgicos beta 3/genética , Transdução de Sinais/genética
11.
Science ; 313(5790): 1137-40, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16931765

RESUMO

Endoplasmic reticulum (ER) stress is a key link between obesity, insulin resistance, and type 2 diabetes. Here, we provide evidence that this mechanistic link can be exploited for therapeutic purposes with orally active chemical chaperones. 4-Phenyl butyric acid and taurine-conjugated ursodeoxycholic acid alleviated ER stress in cells and whole animals. Treatment of obese and diabetic mice with these compounds resulted in normalization of hyperglycemia, restoration of systemic insulin sensitivity, resolution of fatty liver disease, and enhancement of insulin action in liver, muscle, and adipose tissues. Our results demonstrate that chemical chaperones enhance the adaptive capacity of the ER and act as potent antidiabetic modalities with potential application in the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/metabolismo , Glucose/metabolismo , Fenilbutiratos/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática , Fator de Iniciação 2 em Eucariotos/metabolismo , Glucose/administração & dosagem , Teste de Tolerância a Glucose , Homeostase , Insulina/sangue , Insulina/farmacologia , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Obesos , Fenilbutiratos/uso terapêutico , Fosforilação , Receptor de Insulina/metabolismo , Transdução de Sinais , Ácido Tauroquenodesoxicólico/uso terapêutico , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA