Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acc Chem Res ; 54(3): 707-718, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33449626

RESUMO

ConspectusSince the initial discovery of colloidal lead halide perovskite nanocrystals, there has been significant interest placed on these semiconductors because of their remarkable optoelectronic properties, including very high photoluminescence quantum yields, narrow size- and composition-tunable emission over a wide color gamut, defect tolerance, and suppressed blinking. These material attributes have made them attractive components for next-generation solar cells, light emitting diodes, low-threshold lasers, single photon emitters, and X-ray scintillators. While a great deal of research has gone into the various applications of colloidal lead halide perovskite nanocrystals, comparatively little work has focused on the fundamental surface chemistry of these materials. While the surface chemistry of colloidal semiconductor nanocrystals is generally affected by their particle morphology, surface stoichiometry, and organic ligands that contribute to the first coordination sphere of their surface atoms, these attributes are markedly different in lead halide perovskite nanocrystals because of their ionicity.In this Account, emerging work on the surface chemistry of lead halide perovskite nanocrystals is highlighted, with a particular focus placed on the most-studied composition of CsPbBr3. We begin with an in-depth exploration of the native surface chemistry of as-prepared, 0-D cuboidal CsPbBr3 nanocrystals, including an atomistic description of their surface termini, vacancies, and ionic bonding with ligands. We then proceed to discuss various post-synthetic surface treatments that have been developed to increase the photoluminescence quantum yields and stability of CsPbBr3 nanocrystals, including the use of tetraalkylammonium bromides, metal bromides, zwitterions, and phosphonic acids, and how these various ligands are known to bind to the nanocrystal surface. To underscore the effect of post-synthetic surface treatments on the application of these materials, we focus on lead halide perovskite nanocrystal-based light emitting diodes, and the positive effect of various surface treatments on external quantum efficiencies. We also discuss the current state-of-the-art in the surface chemistry of 1-D nanowires and 2-D nanoplatelets of CsPbBr3, which are more quantum confined than the corresponding cuboidal nanocrystals but also generally possess a higher defect density because of their increased surface area-to-volume ratios.

2.
Inorg Chem ; 60(17): 13699-13706, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34492763

RESUMO

N-Heterocyclic carbenes (NHCs) are versatile L-type ligands that have been shown to stabilize coinage metal chalcogenide nanocrystals, such as Ag2S, remarkably well. However, very little research has been done on the interaction between NHC ligands and coinage metal chalcogenide nanocrystal surfaces and subsequent ligand exchange reactions. Herein, solution 1H nuclear magnetic resonance methods were used to monitor ligand exchange reactions on stoichiometric Ag2S nanocrystal platforms with various primary amine and carboxylic acid ligands. Despite the introduction of new ligands, the native NHC ligands remain tightly bound to the Ag2S nanocrystal surface and are not displaced at room temperature. Primary amine and carboxylic acid ligands demonstrated quantitative ligand exchange only after the samples had been heated with an excess incoming ligand, which implies a strong NHC-Ag binding energy. Density functional theory affirms that a model NHC ligand binds the strongest to a Ag12S6 cluster surface, followed by amine and carboxylic acid binding; computational analysis is therefore in line with the absence of NHC displacement observed in experiments. Both the bulky sterics of the C14-alkyl chains on the NHC and the high energies for the binding of NHC to the Ag2S surface contribute to the superior colloidal stability over conventional long-chain amine or carboxylic acid ligands (many months vs hours to days).

3.
J Am Chem Soc ; 142(13): 6117-6127, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32115949

RESUMO

Cesium lead halide perovskite quantum dots (QDs) have gained significant attention as next-generation optoelectronic materials; however, their properties are highly dependent on their surface chemistry. The surfaces of cuboidal CsPbBr3 QDs have been intensively studied by both theoretical and experimental techniques, but fundamental questions still remain about the atomic termination of the QDs. The binding sites and modes of ligands at the surface remain unproven. Herein, we demonstrate that solid-state NMR spectroscopy allows the unambiguous assignment of organic surface ligands via 1H, 13C, and 31P NMR. Surface-selective 133Cs solid-state NMR spectra show the presence of an additional 133Cs NMR signal with a unique chemical shift that is attributed to Cs atoms terminating the surface of the particle and which are likely coordinated by carboxylate ligands. Dipolar dephasing curves that report on the distance between the surface ammonium ligands and Cs and Pb were recorded using double resonance 1H{133Cs} RESPDOR and 1H{207Pb} S-REDOR experiments. Model QD surface slabs with different possible surface terminations were generated from the CsPbBr3 crystal structure, and theoretical dipolar dephasing curves considering all possible 1H-133Cs/207Pb spin pairs were then calculated. Comparison of the calculated and experimental dephasing curves indicates the particles are CsBr terminated (not PbBr2 terminated) with alkylammonium ligands substituting into some surface Cs sites, consistent with the surface-selective 133Cs NMR experiments. These results highlight the utility of high-resolution solid-state NMR spectroscopy for studying ligand binding and the surface structure of nanomaterials.

4.
Angew Chem Int Ed Engl ; 57(36): 11711-11715, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30051545

RESUMO

Cesium lead halide perovskites are an emerging class of quantum dots (QDs) that have shown promise in a variety of applications; however, their properties are highly dependent on their surface chemistry. To this point, the thermodynamics of ligand binding remain unstudied. Herein, 1 H NMR methods were used to quantify the thermodynamics of ligand exchange on CsPbBr3 QDs. Both oleic acid and oleylamine native ligands dynamically interact with the CsPbBr3 QD surface, having individual surface densities of 1.2-1.7 nm-2 . 10-Undecenoic acid undergoes an exergonic exchange equilibrium with bound oleate (Keq =1.97) at 25 °C while 10-undecenylphosphonic acid undergoes irreversible ligand exchange. Undec-10-en-1-amine exergonically exchanges with oleylamine (Keq =2.52) at 25 °C. Exchange occurs with carboxylic acids, phosphonic acids, and amines on CsPbBr3 QDs without etching of the nanocrystal surface; increases in the steady-state PL intensities correlate with more strongly bound conjugate base ligands.

5.
Inorg Chem ; 56(1): 395-401, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27966942

RESUMO

Two new compounds containing tetrathiafulvalene (TTF) cations with extended and discrete anions based on Bi and I are reported. The compound (TTF)BiI4 comprises [BiI2I4/2]- chains of edge-shared octahedra that are interspersed with stacks of TTF+•. The compound (TTF)4BiI6 has mixed-valence stacks of TTF and TTF+• and discrete molecules of TTF+• separated by discrete [BiI6]-3 anions. The optical and electrical transport properties of these compounds are reported. Due to the mixed-valence stacks of TTF, (TTF)4BiI6 is the significantly better electrical conductor than (TTF)BiI4, despite the discrete nature of the inorganic moiety.

6.
Nanoscale ; 14(41): 15327-15339, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36214256

RESUMO

Control over colloidal nanocrystal morphology (size, size distribution, and shape) is important for tailoring the functionality of individual nanocrystals and their ensemble behavior. Despite this, traditional methods to quantify nanocrystal morphology are laborious. New developments in automated morphology classification will accelerate these analyses but the assessment of machine learning models is limited by human accuracy for ground truth, causing even unsupervised machine learning models to have inherent bias. Herein, we introduce synthetic image rendering to solve the ground truth problem of nanocrystal morphology classification. By simulating 2D images of nanocrystal shapes via a function of high-dimensional parameter space, we trained a convolutional neural network to link unique morphologies to their simulated parameters, defining nanocrystal morphology quantitatively rather than qualitatively. An automated pipeline then processes, quantitatively defines, and classifies nanocrystal morphology from experimental transmission electron microscopy (TEM) images. Using improved computer vision techniques, 42 650 nanocrystals were identified, assessed, and labeled with quantitative parameters, offering a 600-fold improvement in efficiency over best-practice manual measurements. A classification algorithm was trained with a prediction accuracy of 99.5%, which can successfully analyze a range of concave, convex, and irregular nanocrystal shapes. The resulting pipeline was applied to differentiating two syntheses of nominally cuboidal CsPbBr3 nanocrystals and uniquely classifying binary nickel sulfide nanocrystal phase based on morphology. This pipeline provides a simple, efficient, and unbiased method to quantify nanocrystal morphology and represents a practical route to construct large datasets with an absolute ground truth for training unbiased morphology-based machine learning algorithms.

7.
Nanoscale ; 12(4): 2764-2772, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31956879

RESUMO

As surface ligands play a critical role in the colloidal stability and optoelectronic properties of semiconductor nanocrystals, we used solution NMR experiments to investigate the surface coordination chemistry of Ge nanocrystals synthesized by a microwave-assisted reduction of GeI2 in oleylamine. The as-synthesized Ge nanocrystals are coordinated to a fraction of strongly bound oleylamide ligands (with covalent X-type Ge-NHR bonds) and a fraction of more weakly bound (or physisorbed) oleylamine, which readily exchanges with free oleylamine in solution. The fraction of strongly bound oleylamide ligands increases with increasing synthesis temperature, which also correlates with better colloidal stability. Thiol and carboxylic acid ligands bind to the Ge nanocrystal surface only upon heating, suggesting a high kinetic barrier to surface binding. These incoming ligands do not displace native oleylamide ligands but instead appear to coordinate to open surface sites, confirming that the as-prepared nanocrystals are not fully passivated. These findings will allow for a better understanding of the surface chemistry of main group nanocrystals and the conditions necessary for ligand exchange to ultimately maximize their functionality.

8.
Nanoscale ; 10(34): 16298-16306, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30128461

RESUMO

Morphologically well-defined colloidal nanocrystals of Ni3S4, NiS, Ni9S8, and Ni3S2 were independently prepared through a solution-phase synthesis using N,N'-disubstituted thioureas as the sulfur precursor. Synthetic control over phase and composition of the resulting colloidal nickel sulfide nanocrystals was achieved by primarily adjusting the reactivity of substituted thioureas as well as tuning the key reaction parameters of temperature and precursor ratio. In general, the more reactive N,N'-diphenyl thiourea yields more sulfur-rich phases (Ni3S4 and NiS) while less reactive N,N'-dibutyl thiourea yields sulfur-poor phases (Ni9S8 and Ni3S2). This phase control can be further tuned through the use of 1-dodecanethiol as an important secondary reactivity-directing agent. In the presence of 1-dodecanethiol, nanocrystals of more sulfur-deficient phases are prepared, while in the absence of 1-dodecanethiol, more sulfur-rich phases are prepared. Under the most sulfur-rich synthetic conditions (i.e., with N,N'-diphenyl thiourea and no thiol) a phase progression from Ni3S4 to the α-NiS and ß-NiS phases was observed upon an increase in reaction temperature and sulfur-to-nickel precursor ratio. This study establishes, for the first time, a systematic evaluation of factors that simultaneously control the phase and yield well-defined nickel sulfide nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA