Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytochem Anal ; 28(2): 106-114, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28008674

RESUMO

INTRODUCTION: Coffee is a widely consumed beverage containing antioxidant active compounds. During roasting the phytochemical composition of the coffee bean changes dramatically and highly polymeric substances are produced. Besides chlorogenic acids that are already present in green coffee beans, melanoidins show antioxidant capacity as well. OBJECTIVE: To employ post-column derivatisation by coupling high performance size exclusion chromatography (HPSEC) to an antioxidant assay to investigate the effect of roasting on the properties of antioxidant active compounds in coffee brews. METHODOLOGY: We have investigated the antioxidant capacity of Coffea arabica (Arabica) and C. canephora (Robusta) beans that were roasted over the full spectrum of roast conditions (four roasting speeds to three roast degrees) by comparing the results from HPSEC coupled on-line to the ABTS assay with those from two batch assays, Folin Ciocalteu (FC) and oxygen radical absorbance capacity (ORAC) assay. RESULTS: The antioxidant capacity showed a general decrease towards slower and darker roasted coffee for all three assays, indicative of heat degradation of active compounds. Hence, low molecular weight (LMW) compounds such as chlorogenic acids (CGAs) decreased progressively already from relatively mild roasting conditions. In contrast, high molecular weight (HMW) compounds (e.g. melanoidins) increased from light to dark roast degrees with lowering magnitude towards slower roasting profiles. CONCLUSION: By coupling HPSEC on-line to the ABTS assay we were able to separately quantify the contribution of HMW and LMW compounds to the total antioxidant capacity, increasing our understanding of the roast process. © 2016 The Authors. Phytochemical Analysis Published by John Wiley & Sons Ltd.


Assuntos
Antioxidantes/análise , Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Café/química , Espectrometria de Massas
2.
Sci Rep ; 14(1): 5612, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453983

RESUMO

The impact of particle size distribution of coffee grounds on espresso extraction was explored. Finely ground coffee for espresso has a characteristically bimodal particle size distribution. For a given median grind size, different grinding technologies can yield a different share of fines (particles < 100 µm). We performed espresso extractions for a range of median particle sizes and systematically varying the share of fines by adding sieved fines to the coffee grounds. Dynamic beverage weights, extraction percentage, extraction time and dynamic headspace PTR-MS (proton-transfer mass spectrometer) analysis and sensory evaluation of the resulting brews were measured. We show that the share of fines plays a key role in the espresso extraction flow rate. An increase of share of fines decreases coffee bed permeability, leads to reduced flow rates and longer extraction times. A statistical model using partial least squares regression of the particle size distributions of coffee grounds confirms that fines decrease the coffee bed permeability. The PTR-MS analysis shows a non-linear increase of aroma compounds in the cup with increasing extraction yield. Our hypothesis is that both extraction efficiency and post-extraction evaporative losses of aroma compounds influence the final aroma compound concentrations in the cup.

3.
Food Chem ; 341(Pt 1): 128193, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33027753

RESUMO

We report, on the successful addition of spray-dried microparticles containing roasted coffee oil, to soluble coffee (SC) and instant cappuccino (IC), to increase and tailor aroma release. Using PTR-ToF-MS (Proton Transfer Reaction Time-of-Flight Mass Spectrometry), five parameters were defined from time series intensity for each VOC, to compare the performance of different products: total area under the curve (AUC), area under the curve of burst (AUC-burst), maximum signal intensity, final intensity (5 min), and ratio AUC-burst/AUC. Microparticles with higher loads of roasted coffee oil were effective in increasing aroma intensity in SC while, for IC, all loads of microparticles improved aroma intensity. Volatility drove the VOC release in SC, and volatility and polarity for IC. Most compounds reached maximum headspace concentration in < 16 s upon start of reconstitution. These results open new perspectives for the development of instant coffee products and demonstrate their unique aroma release characteristics.


Assuntos
Café/química , Odorantes/análise , Óleos de Plantas/química , Espectrometria de Massas/métodos , Prótons , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Volatilização
4.
Sci Rep ; 10(1): 17079, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051489

RESUMO

The objective of this paper is to elucidate the variables that govern coffee extraction from single serve coffee capsules. The study was conducted on 43 Nespresso and Nespresso-compatible capsules of the same geometry, from all of which the coffee was extracted on the same machine. This allowed the link between a range of coffee and capsule (input) parameters with coffee brew (output) variables to be studied. It was demonstrated that the most efficient way to increase total dissolved solids in the brew is to use more coffee for extraction, and/or to grind the coffee more finely. However, grinding too finely can lead to excessive flow restriction. The most significant new insight from this study is the importance of the proportion of fines (particles smaller than 100 µm) regarding the capsule extraction dynamics. Capsules with a higher share of fines, for similar median particle size of the ground coffee, led to longer extraction times. General rules applicable for capsule coffee product development were established, although fine-tuning of parameters for successful capsule coffee extraction remains specific to production line and type of coffee.

5.
Food Chem ; 317: 126455, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32109659

RESUMO

This study presents an experimental approach to study the kinetics and fast release of volatile organic compounds (VOCs) upon reconstitution of instant coffee products. A sampling setup coupled to PTR-ToF-MS (Proton Transfer Reaction Time-of-Flight Mass Spectrometry) for the automated and reproducible reconstitution of instant coffee products was developed to monitor the dynamic release of VOCs. A rapid release of aroma compounds was observed in the first seconds upon hot water addition ("aroma burst"), followed by subsequent decrease in headspace (HS) intensities over the course of analysis. Differences in time-intensity release profiles of individual VOCs were correlated to their Henry's Law constant, vapor pressure and water solubility. The setup and approach proposed here have shown to be sensitive and to respond to fast dynamic changes in aroma release. It allows studying VOCs release upon reconstitution and supports the development of novel technologies and formulations for instant products with improved aroma release properties.


Assuntos
Café/química , Análise de Alimentos/métodos , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Análise de Alimentos/instrumentação , Cinética , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Prótons , Solubilidade , Água
6.
J Agric Food Chem ; 66(21): 5293-5300, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29091435

RESUMO

During the roasting of coffee, thermally driven chemical reactions lead to the formation of gases, of which a large fraction is carbon dioxide (CO2). Part of these gases is released during roasting while part is retained inside the porous structure of the roasted beans and is steadily released during storage or more abruptly during grinding and extraction. The release of CO2 during the various phases from roasting to consumption is linked to many important properties and characteristics of coffee. It is an indicator for freshness, plays an important role in shelf life and in packaging, impacts the extraction process, is involved in crema formation, and may affect the sensory profile in the cup. Indeed, and in view of the multiple roles it plays, CO2 is a much underappreciated and little examined molecule in coffee. Here, we introduce an accurate, quantitative, and time-resolved method to measure the release kinetics of gases from whole beans and ground coffee using a gravimetric approach. Samples were placed in a container with a fitted capillary to allow gases to escape. The time-resolved release of gases was measured via the weight loss of the container filled with coffee. Long-term stability was achieved using a customized design of a semimicro balance, including periodic and automatic zero value measurements and calibration procedures. The novel gravimetric methodology was applied to a range of coffee samples: (i) whole Arabica beans and (ii) ground Arabica and Robusta, roasted to different roast degrees and at different speeds (roast air temperatures). Modeling the degassing rates allowed structural and mechanistic interpretation of the degassing process.


Assuntos
Coffea/química , Café/química , Manipulação de Alimentos/métodos , Sementes/química , Dióxido de Carbono/análise , Embalagem de Alimentos , Conservação de Alimentos , Temperatura Alta , Cinética , Sensação
7.
Food Chem ; 174: 637-42, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25529730

RESUMO

The quality of green coffee is influenced by the degree of ripeness of the fruit at harvest. The aim of this study was to identify chemical markers differentiating between degrees of ripeness. Two coffee varieties, Catuai and Tipica, from the same farm were analysed using the following parameters and methods: caffeine and chlorogenic acid content using high-performance liquid chromatography (HPLC), sucrose content using hydrophilic interaction chromatography, high-molecular weight fraction (HMW) using high-performance size-exclusion chromatography (HPSEC) and volatile compounds using headspace solid phase micro extraction gas chromatography/mass spectrometry. The best method for differentiating between degrees of ripeness was found to be principal component analysis (PCA) based on HPLC data. HPSEC showed differences in the HMW fraction for different degrees of ripeness and both coffee varieties. Volatile profiles allowed separation of both varieties; yet, except for ripe Catuai, no separation was achieved for the degree of ripeness.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Café/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cafeína
8.
Foods ; 3(4): 586-604, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-28234339

RESUMO

Coffee is a major source of dietary antioxidants; some are present in the green bean, whereas others are generated during roasting. However, there is no single accepted analytical method for their routine determination. This paper describes the adaption of three complementary assays (Folin-Ciocalteu (FC), ABTS and ORAC) for the routine assessment of antioxidant capacity of beverages, their validation, and use for determining the antioxidant capacities of extracts from coffee beans at different stages in the roasting process. All assays showed a progressive increase in antioxidant capacity during roasting to a light roast state, consistent with the production of melanoidins having a higher antioxidant effect than the degradation of CGAs. However, the three assays gave different numbers for the total antioxidant capacity of green beans relative to gallic acid (GA), although the range of values was much smaller when chlorogenic acid (CGA) was used as reference. Therefore, although all three assays indicated that there was an increase in antioxidant activity during coffee roasting, and the large differences in responses to GA and CGA illustrate their different sensitivities to different types of antioxidant molecule.

9.
J Chromatogr A ; 1289: 119-26, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23566918

RESUMO

The coupling of thin-layer chromatography with mass spectrometry (TLC-MS) for the analysis of monomeric flavanols and proanthocyanidins in samples presented as complex matrices has been studied. The elution conditions for TLC-MS were optimised and full scans were compared with selected reaction monitoring for the MS detection of compounds. The performance of silica gel and cellulose plates with different developing solvents in TLC-MS was assessed. Cellulose plates provided superior sensitivity while ionisation suppression was encountered with silica plates. The use of a HILIC guard column beyond the elution head was found to facilitate detection of monomer compounds on silica plates. A new comprehensive TLC×MS procedure for screening flavanols in the entire chromatogram was developed as an alternative to the use of 4-dimethylaminocinnamaldehyde to determine the locations of compounds on the plate. This new procedure was applied to detect flavanols in the peel of Punica granatum L. fruits and in seeds of Juniperus communis L., in which flavanols and proanthocyanidin dimers and trimers were detected for the first time.


Assuntos
Cromatografia em Camada Fina/métodos , Flavonóis/análise , Juniperus/química , Espectrometria de Massas/métodos , Extratos Vegetais/análise , Proantocianidinas/análise
10.
Food Funct ; 4(7): 1082-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23592006

RESUMO

During coffee roasting major changes occur in coffee bean composition. Among others dark coloured melanoidins are formed, which are high molecular weight Maillard reaction products. A new approach is presented here to monitor the influence of roasting conditions on the antioxidant capacity of melanoidins and chlorogenic acids (CGAs) in a coffee brew. Validated Folin-Ciocalteu (FC) and ABTS assays were used as on-line antioxidant assays coupled (post-column) with high performance size-exclusion chromatography (HPSEC). HPSEC enabled the separation of melanoidins from CGAs and the determination of the antioxidant capacity of each fraction, within a total elution time of 25 min. Besides the on-line assay measurements, both assays were also applied off-line with flow injection analysis (FIA). The maximum antioxidant capacity was determined to be at a light-to-medium roast degree, measured with both ABTS-FIA and FC-FIA assays as well as on-line ABTS assay. With FC on-line assay the maximum was found to be at a very light roast degree. Based on the peak areas obtained with the new coupled technique the roasting effects on the variability of melanoidin and CGA contents in coffee brews were studied. The majority of melanoidins are already formed in the early stage of the roasting process and the relative contribution of melanoidins to the total antioxidant capacity increases towards darker roasts, mainly because CGAs degrade during roasting. A new parameter, the ratio of melanoidin to CGA peak area, was introduced as a possible predictor of the roast degree.


Assuntos
Antioxidantes/análise , Coffea/química , Culinária/métodos , Antioxidantes/isolamento & purificação , Automação , Ácido Clorogênico/análise , Ácido Clorogênico/isolamento & purificação , Cromatografia em Gel , Café , Temperatura Alta , Reação de Maillard , Polímeros/análise , Polímeros/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA