Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lab Anim ; 54(4): 386-390, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32216534

RESUMO

Imaging is used in human medicine to diagnose disease and monitor treatment efficacy. Computed tomography (CT) positron emission tomography (PET) and magnetic resonance (MR) are applied to animal models of infectious diseases to increase data quality, enhance their relevance to the clinical situation, and to address ethical issues through reduction of numbers and refinement of study designs. The time required for collection of MR and PET-CT scans means that normal breathing produces motion artefacts that can render images unacceptable. We report, for the first time, the use of high frequency jet ventilation (HFJV) for respiratory management during imaging of macaques. HFJV enables continuous gaseous exchange, resulting in cessation of spontaneous breathing motion thus providing a motionless field without the potential stresses induced by repeated breath-hold strategies.


Assuntos
Ventilação em Jatos de Alta Frequência/métodos , Macaca fascicularis , Macaca mulatta , Doenças Respiratórias/diagnóstico por imagem , Animais , Feminino
2.
Lab Anim ; 52(6): 599-610, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29482429

RESUMO

Until validated correlates of protection are identified, animal models remain the only way to test the efficacy of the new vaccines and drugs urgently needed to fight the global epidemic caused by infection with Mycobacterium tuberculosis. Non-human primates (NHP) offer the most relevant models of human tuberculosis (TB) and are central to the development process for new interventions. Efficacy evaluations are dependent on the capability of the test model to discriminate improved outcomes between treated groups after experimental exposure to M. tuberculosis and therefore the ability to measure TB-induced disease burden is central to the process. We have developed a score system that allows us to quantify the disease burden induced in macaques by infection with M. tuberculosis, based on the extent and features of disease visible on computed tomography (CT) images. The CT determined disease burden was then verified against that obtained using an established pathology-based approach. Trials of the system as a tool to measure disease burden have shown the approach capable of revealing differences between treatment groups in order to: (a) characterise outcome of infection and enable model refinement; (b) demonstrate the efficacy of drug treatment regimens by showing differences in outcome between test groups. Initial trials suggest that the imaging-based score system provides a valuable additional tool for the measurement of TB-induced disease burden that offers the opportunity to apply both refinement and reduction within studies.


Assuntos
Modelos Animais de Doenças , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Tuberculose/diagnóstico por imagem , Animais , Antituberculosos/administração & dosagem , Pulmão/microbiologia , Macaca/microbiologia , Masculino , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico
3.
Tuberculosis (Edinb) ; 96: 1-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26786648

RESUMO

Well characterised animal models that can accurately predict efficacy are critical to the development of an improved TB vaccine. The use of high dose challenge for measurement of efficacy in Non-human primate models brings the risk that vaccines with the potential to be efficacious against natural challenge could appear ineffective and thus disregarded. Therefore, there is a need to develop a challenge regimen that is more relevant to natural human infection. This study has established that ultra-low dose infection of macaques via the aerosol route can be reproducibly achieved and provides the first description of the development of TB disease in both rhesus and cynomolgus macaques following exposure to estimated retained doses in the lung of less than 10 CFU of Mycobacterium tuberculosis. CT scanning in vivo and histopathology revealed differences in the progression and burden of disease between the two species. Rhesus macaques exhibited a more progressive disease and cynomolgus macaques showed a reduced disease burden. The ability to deliver reproducible ultra-low dose aerosols to macaques will enable the development of refined models of M. tuberculosis infection for evaluation of the efficacy of novel tuberculosis vaccines that offers increased clinical relevance and improved animal welfare.


Assuntos
Exposição por Inalação , Pulmão/microbiologia , Macaca fascicularis , Macaca mulatta , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose Pulmonar/microbiologia , Aerossóis , Animais , Carga Bacteriana , Biópsia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Progressão da Doença , Interações Hospedeiro-Patógeno , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Pulmão/patologia , Masculino , Mycobacterium tuberculosis/imunologia , Especificidade da Espécie , Fatores de Tempo , Tomografia Computadorizada por Raios X , Tuberculose Pulmonar/diagnóstico por imagem , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA